{"title":"利用对数比值比滤波器进行充分变量筛选","authors":"Baoying Yang, Wenbo Wu, Xiangrong Yin","doi":"10.1214/21-ejs1951","DOIUrl":null,"url":null,"abstract":": For ultrahigh-dimensional data, variable screening is an impor- tant step to reduce the scale of the problem, hence, to improve the estimation accuracy and efficiency. In this paper, we propose a new dependence measure which is called the log odds ratio statistic to be used under the sufficient variable screening framework. The sufficient variable screening approach ensures the sufficiency of the selected input features in model-ing the regression function and is an enhancement of existing marginal screening methods. In addition, we propose an ensemble variable screening approach to combine the proposed fused log odds ratio filter with the fused Kolmogorov filter to achieve supreme performance by taking advantages of both filters. We establish the sure screening properties of the fused log odds ratio filter for both marginal variable screening and sufficient variable screening. Extensive simulations and a real data analysis are provided to demonstrate the usefulness of the proposed log odds ratio filter and the sufficient variable screening procedure.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On sufficient variable screening using log odds ratio filter\",\"authors\":\"Baoying Yang, Wenbo Wu, Xiangrong Yin\",\"doi\":\"10.1214/21-ejs1951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": For ultrahigh-dimensional data, variable screening is an impor- tant step to reduce the scale of the problem, hence, to improve the estimation accuracy and efficiency. In this paper, we propose a new dependence measure which is called the log odds ratio statistic to be used under the sufficient variable screening framework. The sufficient variable screening approach ensures the sufficiency of the selected input features in model-ing the regression function and is an enhancement of existing marginal screening methods. In addition, we propose an ensemble variable screening approach to combine the proposed fused log odds ratio filter with the fused Kolmogorov filter to achieve supreme performance by taking advantages of both filters. We establish the sure screening properties of the fused log odds ratio filter for both marginal variable screening and sufficient variable screening. Extensive simulations and a real data analysis are provided to demonstrate the usefulness of the proposed log odds ratio filter and the sufficient variable screening procedure.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ejs1951\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-ejs1951","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On sufficient variable screening using log odds ratio filter
: For ultrahigh-dimensional data, variable screening is an impor- tant step to reduce the scale of the problem, hence, to improve the estimation accuracy and efficiency. In this paper, we propose a new dependence measure which is called the log odds ratio statistic to be used under the sufficient variable screening framework. The sufficient variable screening approach ensures the sufficiency of the selected input features in model-ing the regression function and is an enhancement of existing marginal screening methods. In addition, we propose an ensemble variable screening approach to combine the proposed fused log odds ratio filter with the fused Kolmogorov filter to achieve supreme performance by taking advantages of both filters. We establish the sure screening properties of the fused log odds ratio filter for both marginal variable screening and sufficient variable screening. Extensive simulations and a real data analysis are provided to demonstrate the usefulness of the proposed log odds ratio filter and the sufficient variable screening procedure.
期刊介绍:
The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.