Marina Vieira da Rosa, Miquéias Ferrão, Pedro Pequeno, A. Lima
{"title":"树木密度和体型大小如何影响亚马逊护树蛙的声音信号?","authors":"Marina Vieira da Rosa, Miquéias Ferrão, Pedro Pequeno, A. Lima","doi":"10.1080/09524622.2023.2204313","DOIUrl":null,"url":null,"abstract":"ABSTRACT The Acoustic Adaptation Hypothesis (AAH) predicts that acoustic signals emitted at sites with greater vegetation density should have spectral and temporal characteristics that increase signal transmission, but there is a pleiotropism related to body size: large animals produce signals with lower frequency. We used 238 advertisement calls of 34 populations of Amazonian nurse frogs from two Amazonian rainforests with different vegetation density to test if tree density influences the evolution of acoustic parameters. We used PGLS to test for relationships between acoustic traits and phenotypic, environmental and geographic predictors. Spectral and temporal features of calls have an allometric relationship with body size. We found a novel quadratic relationship between note duration and body size. The allometric relationship between dominant frequency and body size and a direct effect of tree density indicates that the evolutionary trajectories of Amazonian nurse frogs follow a general macro-evolutionary pattern as in birds. The temporal features of calls have opposite evolutionary trajectories to those predicted by AAH; frogs from lower tree density environments emit longer notes and have higher note rates than those from denser-tree environments. Subtle differences between Amazonian forest types can drive acoustic diversification of temporal and spectral features of calls at micro-evolutionary scales.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How do tree density and body size influence acoustic signals in Amazonian nurse frogs?\",\"authors\":\"Marina Vieira da Rosa, Miquéias Ferrão, Pedro Pequeno, A. Lima\",\"doi\":\"10.1080/09524622.2023.2204313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The Acoustic Adaptation Hypothesis (AAH) predicts that acoustic signals emitted at sites with greater vegetation density should have spectral and temporal characteristics that increase signal transmission, but there is a pleiotropism related to body size: large animals produce signals with lower frequency. We used 238 advertisement calls of 34 populations of Amazonian nurse frogs from two Amazonian rainforests with different vegetation density to test if tree density influences the evolution of acoustic parameters. We used PGLS to test for relationships between acoustic traits and phenotypic, environmental and geographic predictors. Spectral and temporal features of calls have an allometric relationship with body size. We found a novel quadratic relationship between note duration and body size. The allometric relationship between dominant frequency and body size and a direct effect of tree density indicates that the evolutionary trajectories of Amazonian nurse frogs follow a general macro-evolutionary pattern as in birds. The temporal features of calls have opposite evolutionary trajectories to those predicted by AAH; frogs from lower tree density environments emit longer notes and have higher note rates than those from denser-tree environments. Subtle differences between Amazonian forest types can drive acoustic diversification of temporal and spectral features of calls at micro-evolutionary scales.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/09524622.2023.2204313\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/09524622.2023.2204313","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
How do tree density and body size influence acoustic signals in Amazonian nurse frogs?
ABSTRACT The Acoustic Adaptation Hypothesis (AAH) predicts that acoustic signals emitted at sites with greater vegetation density should have spectral and temporal characteristics that increase signal transmission, but there is a pleiotropism related to body size: large animals produce signals with lower frequency. We used 238 advertisement calls of 34 populations of Amazonian nurse frogs from two Amazonian rainforests with different vegetation density to test if tree density influences the evolution of acoustic parameters. We used PGLS to test for relationships between acoustic traits and phenotypic, environmental and geographic predictors. Spectral and temporal features of calls have an allometric relationship with body size. We found a novel quadratic relationship between note duration and body size. The allometric relationship between dominant frequency and body size and a direct effect of tree density indicates that the evolutionary trajectories of Amazonian nurse frogs follow a general macro-evolutionary pattern as in birds. The temporal features of calls have opposite evolutionary trajectories to those predicted by AAH; frogs from lower tree density environments emit longer notes and have higher note rates than those from denser-tree environments. Subtle differences between Amazonian forest types can drive acoustic diversification of temporal and spectral features of calls at micro-evolutionary scales.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.