平滑分位数回归与不可忽略的辍学

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Wei Ma, Lei Wang
{"title":"平滑分位数回归与不可忽略的辍学","authors":"Wei Ma, Lei Wang","doi":"10.1142/s0219530521500354","DOIUrl":null,"url":null,"abstract":"In this paper, we adopt a three-stage estimation procedure and statistical inference methods for quantile regression (QR) based on empirical likelihood (EL) approach with nonignorable dropouts. In the first stage, we consider a parametric model on the dropout propensity of response and handle the parameter identifiability issue by using nonresponse instrument. With the estimated dropout propensity, in the second stage the inverse probability weighting and kernel smoothing methods are applied to construct the bias-corrected and smoothed generalized estimating equations for nonignorable dropouts. In the third stage, borrowing the matrix expansion idea of quadratic inference function, we obtain the proposed estimators that can accommodate the within-subject correlations and improve the estimation efficiency simultaneously. A class of improved estimators and their confidence regions for QR coefficient are derived. Further, the penalized EL method and algorithm for variable selection are investigated. Simulation studies and a real example on HIV-CD4 data set are also provided to show the performance of the proposed estimators.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smoothed quantile regression with nonignorable dropouts\",\"authors\":\"Wei Ma, Lei Wang\",\"doi\":\"10.1142/s0219530521500354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we adopt a three-stage estimation procedure and statistical inference methods for quantile regression (QR) based on empirical likelihood (EL) approach with nonignorable dropouts. In the first stage, we consider a parametric model on the dropout propensity of response and handle the parameter identifiability issue by using nonresponse instrument. With the estimated dropout propensity, in the second stage the inverse probability weighting and kernel smoothing methods are applied to construct the bias-corrected and smoothed generalized estimating equations for nonignorable dropouts. In the third stage, borrowing the matrix expansion idea of quadratic inference function, we obtain the proposed estimators that can accommodate the within-subject correlations and improve the estimation efficiency simultaneously. A class of improved estimators and their confidence regions for QR coefficient are derived. Further, the penalized EL method and algorithm for variable selection are investigated. Simulation studies and a real example on HIV-CD4 data set are also provided to show the performance of the proposed estimators.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530521500354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530521500354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们采用了基于经验似然(EL)方法的分位数回归(QR)的三阶段估计程序和统计推断方法,其中不可忽略的辍学率。在第一阶段,我们考虑了一个关于响应脱落倾向的参数模型,并通过使用无响应工具来处理参数可识别性问题。在估计了辍学倾向的情况下,在第二阶段,应用逆概率加权和核平滑方法构造了不可忽略辍学的偏差校正和平滑广义估计方程。在第三阶段,我们借用二次推理函数的矩阵展开思想,得到了所提出的估计量,该估计量能够适应主题内的相关性,同时提高了估计效率。导出了QR系数的一类改进估计量及其置信区间。此外,还研究了变量选择的惩罚EL方法和算法。还提供了对HIV-CD4数据集的仿真研究和实例,以展示所提出的估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smoothed quantile regression with nonignorable dropouts
In this paper, we adopt a three-stage estimation procedure and statistical inference methods for quantile regression (QR) based on empirical likelihood (EL) approach with nonignorable dropouts. In the first stage, we consider a parametric model on the dropout propensity of response and handle the parameter identifiability issue by using nonresponse instrument. With the estimated dropout propensity, in the second stage the inverse probability weighting and kernel smoothing methods are applied to construct the bias-corrected and smoothed generalized estimating equations for nonignorable dropouts. In the third stage, borrowing the matrix expansion idea of quadratic inference function, we obtain the proposed estimators that can accommodate the within-subject correlations and improve the estimation efficiency simultaneously. A class of improved estimators and their confidence regions for QR coefficient are derived. Further, the penalized EL method and algorithm for variable selection are investigated. Simulation studies and a real example on HIV-CD4 data set are also provided to show the performance of the proposed estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信