M. Kul, B. Akgul, K. O. Oskay, A. E. Alsan, B. Karaca
{"title":"用混合设计法优化再生型砂组成","authors":"M. Kul, B. Akgul, K. O. Oskay, A. E. Alsan, B. Karaca","doi":"10.1080/13640461.2021.1936381","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the cast iron industry, mould sand quality and the most efficient recovery of used sand into the system are critical. For this purpose, the optimum values of the factors (humidity, active bentonite and coal dust) affecting the green strength, gas permeability and shear strength of the mould sand were determined in this study. The optimum mixture ratio, which makes the green strength, gas permeability and shear strength of the mould sand the best, was made by using the mixture design method. As a result of the studies, optimum casting sand composition; the percentage of moisture content, the percentage of coal dust, the percentage of active bentonite and the percentage of recycle sand were determined as 3.92%, 0.05%, 0.30% and 95.73%, respectively. The green compression strength(B1) 23.5 N/cm2, shear strength(B2) 7.7 N/cm2 and gas permeability (B3) 91 mmWS of the conventional cast sand prepared in this optimum composition were measured.","PeriodicalId":13939,"journal":{"name":"International Journal of Cast Metals Research","volume":"34 1","pages":"104 - 109"},"PeriodicalIF":1.3000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13640461.2021.1936381","citationCount":"2","resultStr":"{\"title\":\"Optimisation of recycled moulding sand composition using the mixture design method\",\"authors\":\"M. Kul, B. Akgul, K. O. Oskay, A. E. Alsan, B. Karaca\",\"doi\":\"10.1080/13640461.2021.1936381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the cast iron industry, mould sand quality and the most efficient recovery of used sand into the system are critical. For this purpose, the optimum values of the factors (humidity, active bentonite and coal dust) affecting the green strength, gas permeability and shear strength of the mould sand were determined in this study. The optimum mixture ratio, which makes the green strength, gas permeability and shear strength of the mould sand the best, was made by using the mixture design method. As a result of the studies, optimum casting sand composition; the percentage of moisture content, the percentage of coal dust, the percentage of active bentonite and the percentage of recycle sand were determined as 3.92%, 0.05%, 0.30% and 95.73%, respectively. The green compression strength(B1) 23.5 N/cm2, shear strength(B2) 7.7 N/cm2 and gas permeability (B3) 91 mmWS of the conventional cast sand prepared in this optimum composition were measured.\",\"PeriodicalId\":13939,\"journal\":{\"name\":\"International Journal of Cast Metals Research\",\"volume\":\"34 1\",\"pages\":\"104 - 109\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13640461.2021.1936381\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cast Metals Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/13640461.2021.1936381\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cast Metals Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/13640461.2021.1936381","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Optimisation of recycled moulding sand composition using the mixture design method
ABSTRACT In the cast iron industry, mould sand quality and the most efficient recovery of used sand into the system are critical. For this purpose, the optimum values of the factors (humidity, active bentonite and coal dust) affecting the green strength, gas permeability and shear strength of the mould sand were determined in this study. The optimum mixture ratio, which makes the green strength, gas permeability and shear strength of the mould sand the best, was made by using the mixture design method. As a result of the studies, optimum casting sand composition; the percentage of moisture content, the percentage of coal dust, the percentage of active bentonite and the percentage of recycle sand were determined as 3.92%, 0.05%, 0.30% and 95.73%, respectively. The green compression strength(B1) 23.5 N/cm2, shear strength(B2) 7.7 N/cm2 and gas permeability (B3) 91 mmWS of the conventional cast sand prepared in this optimum composition were measured.
期刊介绍:
The International Journal of Cast Metals Research is devoted to the dissemination of peer reviewed information on the science and engineering of cast metals, solidification and casting processes. Assured production of high integrity castings requires an integrated approach that optimises casting, mould and gating design; mould materials and binders; alloy composition and microstructure; metal melting, modification and handling; dimensional control; and finishing and post-treatment of the casting. The Journal reports advances in both the fundamental science and materials and production engineering contributing to the successful manufacture of fit for purpose castings.