加性高斯场节点域的有界性

IF 0.4 Q4 STATISTICS & PROBABILITY
S. Muirhead
{"title":"加性高斯场节点域的有界性","authors":"S. Muirhead","doi":"10.1090/tpms/1169","DOIUrl":null,"url":null,"abstract":"We study the connectivity of the excursion sets of additive Gaussian fields, i.e. stationary centred Gaussian fields whose covariance function decomposes into a sum of terms that depend separately on the coordinates. Our main result is that, under mild smoothness and correlation decay assumptions, the excursion sets \n\n \n \n {\n f\n ≤\n ℓ\n }\n \n \\{f \\le \\ell \\}\n \n\n of additive planar Gaussian fields are bounded almost surely at the critical level \n\n \n \n \n ℓ\n c\n \n =\n 0\n \n \\ell _c = 0\n \n\n. Since we do not assume positive correlations, this provides the first examples of continuous non-positively-correlated stationary planar Gaussian fields for which the boundedness of the nodal domains has been confirmed. By contrast, in dimension \n\n \n \n d\n ≥\n 3\n \n d \\ge 3\n \n\n the excursion sets have unbounded components at all levels.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness of the nodal domains of additive Gaussian fields\",\"authors\":\"S. Muirhead\",\"doi\":\"10.1090/tpms/1169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the connectivity of the excursion sets of additive Gaussian fields, i.e. stationary centred Gaussian fields whose covariance function decomposes into a sum of terms that depend separately on the coordinates. Our main result is that, under mild smoothness and correlation decay assumptions, the excursion sets \\n\\n \\n \\n {\\n f\\n ≤\\n ℓ\\n }\\n \\n \\\\{f \\\\le \\\\ell \\\\}\\n \\n\\n of additive planar Gaussian fields are bounded almost surely at the critical level \\n\\n \\n \\n \\n ℓ\\n c\\n \\n =\\n 0\\n \\n \\\\ell _c = 0\\n \\n\\n. Since we do not assume positive correlations, this provides the first examples of continuous non-positively-correlated stationary planar Gaussian fields for which the boundedness of the nodal domains has been confirmed. By contrast, in dimension \\n\\n \\n \\n d\\n ≥\\n 3\\n \\n d \\\\ge 3\\n \\n\\n the excursion sets have unbounded components at all levels.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了加性高斯场偏移集的连通性,即其协方差函数分解为分别依赖于坐标的项和的平稳中心高斯场。我们的主要结果是,在温和平滑和相关衰减假设下,加性平面高斯场的偏移集{f≤}α {f \le\ell}在临界能级α c = 0 \ell _c = 0几乎肯定有界。由于我们不假设正相关,这提供了连续非正相关的平稳平面高斯场的第一个例子,其中节点域的有界性已经得到证实。相反,在维度d≥3d \ge 3中,偏移集在所有级别上都具有无界分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness of the nodal domains of additive Gaussian fields
We study the connectivity of the excursion sets of additive Gaussian fields, i.e. stationary centred Gaussian fields whose covariance function decomposes into a sum of terms that depend separately on the coordinates. Our main result is that, under mild smoothness and correlation decay assumptions, the excursion sets { f ≤ ℓ } \{f \le \ell \} of additive planar Gaussian fields are bounded almost surely at the critical level ℓ c = 0 \ell _c = 0 . Since we do not assume positive correlations, this provides the first examples of continuous non-positively-correlated stationary planar Gaussian fields for which the boundedness of the nodal domains has been confirmed. By contrast, in dimension d ≥ 3 d \ge 3 the excursion sets have unbounded components at all levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信