{"title":"结合空间-光谱薛定谔特征映射和多核学习的低样本高光谱图像分类","authors":"Shirin Hassanzadeh, H. Danyali, M. Helfroush","doi":"10.1080/07038992.2021.1978840","DOIUrl":null,"url":null,"abstract":"Abstract The classification of hyperspectral images is one of the most popular fields in remote sensing applications. It should be noted that spectral and spatial features have critical roles in this research area. This paper proposes a method based on spatial-spectral Schroedinger eigenmaps (SSSE) and multiple kernel learning (MKL) to classify hyperspectral images more efficiently while using a low number of training samples. In the proposed method, first SSSE is applied to spectral domain in order to extract significant features and reduce dimension of the original image. Then MKL is utilized to enhance the feature learning process and obtain an optimum combination of some specified kernels. Finally, the classification is carried out by substituting the optimal kernel in support vector machine (SVM) algorithm. Experimental results show that the proposed method improves classification accuracy significantly and provides highly efficient results in the case of a small number of training samples. Furthermore, the computation time of the proposed method is much lower than the state-of-the-art MKL methods.","PeriodicalId":48843,"journal":{"name":"Canadian Journal of Remote Sensing","volume":"48 1","pages":"579 - 591"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combined Spatial-Spectral Schroedinger Eigenmaps with Multiple Kernel Learning for Hyperspectral Image Classification Using a Low Number of Training Samples\",\"authors\":\"Shirin Hassanzadeh, H. Danyali, M. Helfroush\",\"doi\":\"10.1080/07038992.2021.1978840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The classification of hyperspectral images is one of the most popular fields in remote sensing applications. It should be noted that spectral and spatial features have critical roles in this research area. This paper proposes a method based on spatial-spectral Schroedinger eigenmaps (SSSE) and multiple kernel learning (MKL) to classify hyperspectral images more efficiently while using a low number of training samples. In the proposed method, first SSSE is applied to spectral domain in order to extract significant features and reduce dimension of the original image. Then MKL is utilized to enhance the feature learning process and obtain an optimum combination of some specified kernels. Finally, the classification is carried out by substituting the optimal kernel in support vector machine (SVM) algorithm. Experimental results show that the proposed method improves classification accuracy significantly and provides highly efficient results in the case of a small number of training samples. Furthermore, the computation time of the proposed method is much lower than the state-of-the-art MKL methods.\",\"PeriodicalId\":48843,\"journal\":{\"name\":\"Canadian Journal of Remote Sensing\",\"volume\":\"48 1\",\"pages\":\"579 - 591\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07038992.2021.1978840\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07038992.2021.1978840","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Combined Spatial-Spectral Schroedinger Eigenmaps with Multiple Kernel Learning for Hyperspectral Image Classification Using a Low Number of Training Samples
Abstract The classification of hyperspectral images is one of the most popular fields in remote sensing applications. It should be noted that spectral and spatial features have critical roles in this research area. This paper proposes a method based on spatial-spectral Schroedinger eigenmaps (SSSE) and multiple kernel learning (MKL) to classify hyperspectral images more efficiently while using a low number of training samples. In the proposed method, first SSSE is applied to spectral domain in order to extract significant features and reduce dimension of the original image. Then MKL is utilized to enhance the feature learning process and obtain an optimum combination of some specified kernels. Finally, the classification is carried out by substituting the optimal kernel in support vector machine (SVM) algorithm. Experimental results show that the proposed method improves classification accuracy significantly and provides highly efficient results in the case of a small number of training samples. Furthermore, the computation time of the proposed method is much lower than the state-of-the-art MKL methods.
期刊介绍:
Canadian Journal of Remote Sensing / Journal canadien de télédétection is a publication of the Canadian Aeronautics and Space Institute (CASI) and the official journal of the Canadian Remote Sensing Society (CRSS-SCT).
Canadian Journal of Remote Sensing provides a forum for the publication of scientific research and review articles. The journal publishes topics including sensor and algorithm development, image processing techniques and advances focused on a wide range of remote sensing applications including, but not restricted to; forestry and agriculture, ecology, hydrology and water resources, oceans and ice, geology, urban, atmosphere, and environmental science. Articles can cover local to global scales and can be directly relevant to the Canadian, or equally important, the international community. The international editorial board provides expertise in a wide range of remote sensing theory and applications.