利用机器学习分析天气条件对集装箱码头运营的影响

Pub Date : 2022-01-01 DOI:10.4018/ijban.298016
Üstün Atak, Tolga Kaya, Yasin Arslanoğlu
{"title":"利用机器学习分析天气条件对集装箱码头运营的影响","authors":"Üstün Atak, Tolga Kaya, Yasin Arslanoğlu","doi":"10.4018/ijban.298016","DOIUrl":null,"url":null,"abstract":"Container ships transport a large number of valuable cargoes, and there is a demand for less expensive and faster transportation options. Weather, vessel type, and the nature and amount of the goods are all external elements that might impact container handling times, which are directly related to overall port stay time. In this scope, container terminal operations could be optimised with the help of historical data which provides access to classification and prediction of the cargo handling operations. In this study, the real-time data of a container terminal operation is analysed with different machine learning techniques along with the Fuzzy C-Means clustering method. The results show that Fuzzy C-Means clustering has a positive impact on the explanatory power of models in container terminal operations. The research revealed that an increase in wind speed influences cargo handling time for mobile cranes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysing the Effects of Weather Conditions on Container Terminal Operations Using Machine Learning\",\"authors\":\"Üstün Atak, Tolga Kaya, Yasin Arslanoğlu\",\"doi\":\"10.4018/ijban.298016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Container ships transport a large number of valuable cargoes, and there is a demand for less expensive and faster transportation options. Weather, vessel type, and the nature and amount of the goods are all external elements that might impact container handling times, which are directly related to overall port stay time. In this scope, container terminal operations could be optimised with the help of historical data which provides access to classification and prediction of the cargo handling operations. In this study, the real-time data of a container terminal operation is analysed with different machine learning techniques along with the Fuzzy C-Means clustering method. The results show that Fuzzy C-Means clustering has a positive impact on the explanatory power of models in container terminal operations. The research revealed that an increase in wind speed influences cargo handling time for mobile cranes.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijban.298016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijban.298016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

集装箱船运输大量贵重货物,人们需要更便宜、更快的运输选择。天气、船型、货物的性质和数量都是可能影响集装箱装卸时间的外部因素,这直接关系到整个港口停留时间。在这个范围内,集装箱码头的操作可以在历史数据的帮助下进行优化,这些数据提供了对货物处理操作的分类和预测。在本研究中,采用不同的机器学习技术以及模糊c均值聚类方法分析了集装箱码头操作的实时数据。结果表明,模糊c均值聚类对集装箱码头运营模型的解释能力有正向影响。研究表明,风速的增加会影响移动起重机的货物处理时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Analysing the Effects of Weather Conditions on Container Terminal Operations Using Machine Learning
Container ships transport a large number of valuable cargoes, and there is a demand for less expensive and faster transportation options. Weather, vessel type, and the nature and amount of the goods are all external elements that might impact container handling times, which are directly related to overall port stay time. In this scope, container terminal operations could be optimised with the help of historical data which provides access to classification and prediction of the cargo handling operations. In this study, the real-time data of a container terminal operation is analysed with different machine learning techniques along with the Fuzzy C-Means clustering method. The results show that Fuzzy C-Means clustering has a positive impact on the explanatory power of models in container terminal operations. The research revealed that an increase in wind speed influences cargo handling time for mobile cranes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信