模拟流氓波形成的修正非线性Schrödinger方程的适定性

C. Holliman, L. Hyslop
{"title":"模拟流氓波形成的修正非线性Schrödinger方程的适定性","authors":"C. Holliman, L. Hyslop","doi":"10.30538/psrp-oma2021.0088","DOIUrl":null,"url":null,"abstract":"The Cauchy problem for a higher order modification of the nonlinear Schrödinger equation (MNLS) on the line is shown to be well-posed in Sobolev spaces with exponent \\(s > \\frac{1}{4}\\). This result is achieved by demonstrating that the associated integral operator is a contraction on a Bourgain space that has been adapted to the particular linear symbol present in the equation. The contraction is proved by using microlocal analysis and a trilinear estimate that is shown via the \\([k; Z]\\)-multiplier norm method developed by Terence Tao.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness for a modified nonlinear Schrödinger equation modeling the formation of rogue waves\",\"authors\":\"C. Holliman, L. Hyslop\",\"doi\":\"10.30538/psrp-oma2021.0088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cauchy problem for a higher order modification of the nonlinear Schrödinger equation (MNLS) on the line is shown to be well-posed in Sobolev spaces with exponent \\\\(s > \\\\frac{1}{4}\\\\). This result is achieved by demonstrating that the associated integral operator is a contraction on a Bourgain space that has been adapted to the particular linear symbol present in the equation. The contraction is proved by using microlocal analysis and a trilinear estimate that is shown via the \\\\([k; Z]\\\\)-multiplier norm method developed by Terence Tao.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/psrp-oma2021.0088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2021.0088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证明了非线性Schrödinger方程(MNLS)在线上的高阶修正的Cauchy问题在指数为\(s>\frac{1}{4}\)的Sobolev空间中是适定的。这一结果是通过证明相关的积分算子是布尔增益空间上的收缩来实现的,布尔增益空间已经适应于方程中存在的特定线性符号。利用微观局部分析和Terence Tao提出的\([k;Z]\)-乘数范数方法给出的三线性估计证明了收缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness for a modified nonlinear Schrödinger equation modeling the formation of rogue waves
The Cauchy problem for a higher order modification of the nonlinear Schrödinger equation (MNLS) on the line is shown to be well-posed in Sobolev spaces with exponent \(s > \frac{1}{4}\). This result is achieved by demonstrating that the associated integral operator is a contraction on a Bourgain space that has been adapted to the particular linear symbol present in the equation. The contraction is proved by using microlocal analysis and a trilinear estimate that is shown via the \([k; Z]\)-multiplier norm method developed by Terence Tao.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信