开卷和适当支承的圆杆螺旋弹簧的闭式屈曲公式

Q3 Engineering
Yildirim Vebil
{"title":"开卷和适当支承的圆杆螺旋弹簧的闭式屈曲公式","authors":"Yildirim Vebil","doi":"10.2478/scjme-2018-0025","DOIUrl":null,"url":null,"abstract":"Abstract As a continuation of the author’s previous studies on the buckling analysis of helical springs, a closed-form formula having been obtained with the help of the artificial neural network (ANN) is proposed and discussed in detail for the first time for a cylindrical close/open-coiled helical spring with fixed ends and having a solid circular section. As far as the author knows there is no such a formula in the open-literature to consider the effects of all stress resultants (torsional and bending moments, axial and shearing forces), large helix pitch angles together with the axial and shear deformations on the buckled state. The present formula may be used in a wide range of the total number of active turns, the ratio of the free axial length to the mean helix diameter, and the spring index. It is yet again revealed that it is not appropriate to use the elementary theory to determine the critical buckling loads for open-coiled springs. The present formula may allow the deeper understanding of spring buckling mechanism and to be used directly and safely in the design processes of such closely/open-coiled springs.","PeriodicalId":35968,"journal":{"name":"Strojnicky Casopis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2478/scjme-2018-0025","citationCount":"0","resultStr":"{\"title\":\"A Closed-Form Buckling Formula for Open-Coiled and Properly Supported Circular-Bar Helical Springs\",\"authors\":\"Yildirim Vebil\",\"doi\":\"10.2478/scjme-2018-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As a continuation of the author’s previous studies on the buckling analysis of helical springs, a closed-form formula having been obtained with the help of the artificial neural network (ANN) is proposed and discussed in detail for the first time for a cylindrical close/open-coiled helical spring with fixed ends and having a solid circular section. As far as the author knows there is no such a formula in the open-literature to consider the effects of all stress resultants (torsional and bending moments, axial and shearing forces), large helix pitch angles together with the axial and shear deformations on the buckled state. The present formula may be used in a wide range of the total number of active turns, the ratio of the free axial length to the mean helix diameter, and the spring index. It is yet again revealed that it is not appropriate to use the elementary theory to determine the critical buckling loads for open-coiled springs. The present formula may allow the deeper understanding of spring buckling mechanism and to be used directly and safely in the design processes of such closely/open-coiled springs.\",\"PeriodicalId\":35968,\"journal\":{\"name\":\"Strojnicky Casopis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2478/scjme-2018-0025\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojnicky Casopis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/scjme-2018-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojnicky Casopis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/scjme-2018-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

作为对螺旋弹簧屈曲分析研究的延续,本文首次提出并详细讨论了具有实心圆截面的圆柱形闭/开螺旋弹簧的闭式屈曲分析公式,并利用人工神经网络(ANN)对其进行了分析。据笔者所知,在公开文献中没有这样的公式来考虑所有应力结果(扭弯矩、轴向力和剪力)、大螺旋螺距角以及轴向和剪切变形对屈曲状态的影响。本公式可用于大范围的总有效匝数、自由轴长与平均螺旋直径之比和弹簧指数。再一次揭示了用基本理论来确定开卷弹簧的临界屈曲载荷是不合适的。该公式可使我们对弹簧屈曲机理有更深入的了解,并可直接、安全地应用于此类密卷/开卷弹簧的设计过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Closed-Form Buckling Formula for Open-Coiled and Properly Supported Circular-Bar Helical Springs
Abstract As a continuation of the author’s previous studies on the buckling analysis of helical springs, a closed-form formula having been obtained with the help of the artificial neural network (ANN) is proposed and discussed in detail for the first time for a cylindrical close/open-coiled helical spring with fixed ends and having a solid circular section. As far as the author knows there is no such a formula in the open-literature to consider the effects of all stress resultants (torsional and bending moments, axial and shearing forces), large helix pitch angles together with the axial and shear deformations on the buckled state. The present formula may be used in a wide range of the total number of active turns, the ratio of the free axial length to the mean helix diameter, and the spring index. It is yet again revealed that it is not appropriate to use the elementary theory to determine the critical buckling loads for open-coiled springs. The present formula may allow the deeper understanding of spring buckling mechanism and to be used directly and safely in the design processes of such closely/open-coiled springs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Strojnicky Casopis
Strojnicky Casopis Engineering-Mechanical Engineering
CiteScore
2.00
自引率
0.00%
发文量
33
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信