金核壳磁性纳米颗粒免疫传感器在霍乱弧菌检测中的应用

Q3 Biochemistry, Genetics and Molecular Biology
J. Rashidiani, Khadijeh Eskandari, R. Ranjbar, H. Kooshki, D. Afshar, F. S. Dehkordi
{"title":"金核壳磁性纳米颗粒免疫传感器在霍乱弧菌检测中的应用","authors":"J. Rashidiani, Khadijeh Eskandari, R. Ranjbar, H. Kooshki, D. Afshar, F. S. Dehkordi","doi":"10.30491/JABR.2020.230689.1222","DOIUrl":null,"url":null,"abstract":"Introduction: For rapid and sensitive detection of Vibrio cholerae an accurate assay is needed. In the present study, a gold-coated magnetic nanoparticle (GMNP) was investigated for the detection of V. cholerae. Materials and Methods: GMNPs were synthesized and functionalized by 11-mercapto-undecanoic acid (MUA) as a linker for immobilization of IgG against V. cholerae OmpW antigen. In the next step, IgG was coupled with carboxylic group of MUA using EDC / NHS and the IgG/GMNPs nanocomposite created and finally, the bacterium was detected in a sandwich model ELISA. Results: The IgG/GMNPs nanocomposite could detect V.cholerae in a concentration range from 2.5×10-2 to 1.5 × 105 N/ml (number of V.cholerae per ml). The correlation coefficient was 0.99 and the detection limit was 16 N/ml. Conclusions: In this study, the procedure of antibody immobilization on magnetic nanoparticles was designed. So that, by using magnetic nanoparticles, the pre-concentration as a time-consuming step was removed and the sensitivity of V. cholerae determination was increased. Also, this method can be extended to detect other microorganisms.","PeriodicalId":14945,"journal":{"name":"Journal of Applied Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Gold Core-Shell Magnetic Nanoparticles as an Immunosensor for the Detection of Vibrio cholerae\",\"authors\":\"J. Rashidiani, Khadijeh Eskandari, R. Ranjbar, H. Kooshki, D. Afshar, F. S. Dehkordi\",\"doi\":\"10.30491/JABR.2020.230689.1222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: For rapid and sensitive detection of Vibrio cholerae an accurate assay is needed. In the present study, a gold-coated magnetic nanoparticle (GMNP) was investigated for the detection of V. cholerae. Materials and Methods: GMNPs were synthesized and functionalized by 11-mercapto-undecanoic acid (MUA) as a linker for immobilization of IgG against V. cholerae OmpW antigen. In the next step, IgG was coupled with carboxylic group of MUA using EDC / NHS and the IgG/GMNPs nanocomposite created and finally, the bacterium was detected in a sandwich model ELISA. Results: The IgG/GMNPs nanocomposite could detect V.cholerae in a concentration range from 2.5×10-2 to 1.5 × 105 N/ml (number of V.cholerae per ml). The correlation coefficient was 0.99 and the detection limit was 16 N/ml. Conclusions: In this study, the procedure of antibody immobilization on magnetic nanoparticles was designed. So that, by using magnetic nanoparticles, the pre-concentration as a time-consuming step was removed and the sensitivity of V. cholerae determination was increased. Also, this method can be extended to detect other microorganisms.\",\"PeriodicalId\":14945,\"journal\":{\"name\":\"Journal of Applied Biotechnology Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biotechnology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30491/JABR.2020.230689.1222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30491/JABR.2020.230689.1222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

为了快速、灵敏地检测霍乱弧菌,需要一种准确的检测方法。本研究研究了一种包裹金的磁性纳米粒子(GMNP)用于霍乱弧菌的检测。材料与方法:合成GMNPs,并以11-巯基十一酸(MUA)功能化,作为固定IgG抗霍乱弧菌OmpW抗原的连接物。下一步,用EDC / NHS将IgG与MUA的羧基偶联,制备IgG/GMNPs纳米复合材料,最后用夹心模型ELISA检测细菌。结果:IgG/GMNPs纳米复合物在2.5×10-2 ~ 1.5 × 105 N/ml(每ml霍乱弧菌数)范围内可检出霍乱弧菌。相关系数为0.99,检出限为16 N/ml。结论:本研究设计了磁性纳米颗粒固定抗体的方法。因此,磁性纳米颗粒消除了预先富集这一耗时的步骤,提高了霍乱弧菌检测的灵敏度。此外,该方法还可以扩展到其他微生物的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Gold Core-Shell Magnetic Nanoparticles as an Immunosensor for the Detection of Vibrio cholerae
Introduction: For rapid and sensitive detection of Vibrio cholerae an accurate assay is needed. In the present study, a gold-coated magnetic nanoparticle (GMNP) was investigated for the detection of V. cholerae. Materials and Methods: GMNPs were synthesized and functionalized by 11-mercapto-undecanoic acid (MUA) as a linker for immobilization of IgG against V. cholerae OmpW antigen. In the next step, IgG was coupled with carboxylic group of MUA using EDC / NHS and the IgG/GMNPs nanocomposite created and finally, the bacterium was detected in a sandwich model ELISA. Results: The IgG/GMNPs nanocomposite could detect V.cholerae in a concentration range from 2.5×10-2 to 1.5 × 105 N/ml (number of V.cholerae per ml). The correlation coefficient was 0.99 and the detection limit was 16 N/ml. Conclusions: In this study, the procedure of antibody immobilization on magnetic nanoparticles was designed. So that, by using magnetic nanoparticles, the pre-concentration as a time-consuming step was removed and the sensitivity of V. cholerae determination was increased. Also, this method can be extended to detect other microorganisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biotechnology Reports
Journal of Applied Biotechnology Reports Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
1.90
自引率
0.00%
发文量
0
期刊介绍: The Journal of Applied Biotechnology Reports (JABR) publishes papers describing experimental work relating to all fundamental issues of biotechnology including: Cell Biology, Genetics, Microbiology, Immunology, Molecular Biology, Biochemistry, Embryology, Immunogenetics, Cell and Tissue Culture, Molecular Ecology, Genetic Engineering and Biological Engineering, Bioremediation and Biodegradation, Bioinformatics, Biotechnology Regulations, Pharmacogenomics, Gene Therapy, Plant, Animal, Microbial and Environmental Biotechnology, Nanobiotechnology, Medical Biotechnology, Biosafety, Biosecurity, Bioenergy, Biomass, Biomaterials and Biobased Chemicals and Enzymes. Journal of Applied Biotechnology Reports promotes a special emphasis on: -Improvement methods in biotechnology -Optimization process for high production in fermentor systems -Protein and enzyme engineering -Antibody engineering and monoclonal antibody -Molecular farming -Bioremediation -Immobilizing methods -biocatalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信