一类非线性毒素依赖大小结构种群模型解的存在唯一性

IF 0.4 Q4 MATHEMATICS, APPLIED
Y. Li, Qihua Huang
{"title":"一类非线性毒素依赖大小结构种群模型解的存在唯一性","authors":"Y. Li, Qihua Huang","doi":"10.5206/mase/15074","DOIUrl":null,"url":null,"abstract":"In this paper, we study a toxin-mediated size-structured population model with nonlinear reproduction, growth, and mortality rates. By using the characteristic method and the contraction mapping argument, we establish the existence-uniqueness of solutions to the model. We also prove the continuous dependence of solutions on initial conditions.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The existence and uniqueness of solutions of a nonlinear toxin-dependent size-structured population model\",\"authors\":\"Y. Li, Qihua Huang\",\"doi\":\"10.5206/mase/15074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a toxin-mediated size-structured population model with nonlinear reproduction, growth, and mortality rates. By using the characteristic method and the contraction mapping argument, we establish the existence-uniqueness of solutions to the model. We also prove the continuous dependence of solutions on initial conditions.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mase/15074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/15074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一个具有非线性繁殖、生长和死亡率的毒素介导的大小结构种群模型。利用特征方法和收缩映射论证,建立了模型解的存在唯一性。我们还证明了解对初始条件的连续依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The existence and uniqueness of solutions of a nonlinear toxin-dependent size-structured population model
In this paper, we study a toxin-mediated size-structured population model with nonlinear reproduction, growth, and mortality rates. By using the characteristic method and the contraction mapping argument, we establish the existence-uniqueness of solutions to the model. We also prove the continuous dependence of solutions on initial conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信