C. Dauber, Emma Parente, María Pía Zucca, A. Gámbaro, I. Vieitez
{"title":"木犀及其副产物:提取方法和化妆品应用","authors":"C. Dauber, Emma Parente, María Pía Zucca, A. Gámbaro, I. Vieitez","doi":"10.3390/cosmetics10040112","DOIUrl":null,"url":null,"abstract":"Currently, in addition to the use of olive oil in cosmetics, the use of olive-derived bioactives and their incorporation into cosmetics is a growing trend. The olive oil industry produces vast quantities of by-products, such as olive mill wastewater, olive pomace and leaves from which new ingredients may be obtained for cosmetic use. In this way, by-products are revalorized, which contributes to the implementation of a sustainable economy or upcycling. This review intends to provide a detailed overview of the different extraction techniques reported in order to obtain the bioactive compounds of cosmetic value that can be found in olive by-products: fatty acids, tocopherols, polyphenols, phytosterols and squalene. Different extraction techniques are presented, including some traditional techniques (solid–liquid extraction) and more novel or “greener” ones: ultrasound, microwave, supercritical extraction, pressurized fluids and deep eutectic solvents. Additionally, different applications of olive by-products in skin care products are explored: emollient, antioxidant, anti-age, anti-inflammatory, antiviral, antifungal and antibacterial, and the perspective of consumers is also considered since they increasingly demand products formulated with natural ingredients.","PeriodicalId":10735,"journal":{"name":"Cosmetics","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Olea europea and By-Products: Extraction Methods and Cosmetic Applications\",\"authors\":\"C. Dauber, Emma Parente, María Pía Zucca, A. Gámbaro, I. Vieitez\",\"doi\":\"10.3390/cosmetics10040112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, in addition to the use of olive oil in cosmetics, the use of olive-derived bioactives and their incorporation into cosmetics is a growing trend. The olive oil industry produces vast quantities of by-products, such as olive mill wastewater, olive pomace and leaves from which new ingredients may be obtained for cosmetic use. In this way, by-products are revalorized, which contributes to the implementation of a sustainable economy or upcycling. This review intends to provide a detailed overview of the different extraction techniques reported in order to obtain the bioactive compounds of cosmetic value that can be found in olive by-products: fatty acids, tocopherols, polyphenols, phytosterols and squalene. Different extraction techniques are presented, including some traditional techniques (solid–liquid extraction) and more novel or “greener” ones: ultrasound, microwave, supercritical extraction, pressurized fluids and deep eutectic solvents. Additionally, different applications of olive by-products in skin care products are explored: emollient, antioxidant, anti-age, anti-inflammatory, antiviral, antifungal and antibacterial, and the perspective of consumers is also considered since they increasingly demand products formulated with natural ingredients.\",\"PeriodicalId\":10735,\"journal\":{\"name\":\"Cosmetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cosmetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cosmetics10040112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cosmetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cosmetics10040112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Olea europea and By-Products: Extraction Methods and Cosmetic Applications
Currently, in addition to the use of olive oil in cosmetics, the use of olive-derived bioactives and their incorporation into cosmetics is a growing trend. The olive oil industry produces vast quantities of by-products, such as olive mill wastewater, olive pomace and leaves from which new ingredients may be obtained for cosmetic use. In this way, by-products are revalorized, which contributes to the implementation of a sustainable economy or upcycling. This review intends to provide a detailed overview of the different extraction techniques reported in order to obtain the bioactive compounds of cosmetic value that can be found in olive by-products: fatty acids, tocopherols, polyphenols, phytosterols and squalene. Different extraction techniques are presented, including some traditional techniques (solid–liquid extraction) and more novel or “greener” ones: ultrasound, microwave, supercritical extraction, pressurized fluids and deep eutectic solvents. Additionally, different applications of olive by-products in skin care products are explored: emollient, antioxidant, anti-age, anti-inflammatory, antiviral, antifungal and antibacterial, and the perspective of consumers is also considered since they increasingly demand products formulated with natural ingredients.