随机逼近与不连续动力学,微分夹杂,和应用

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
N. Nguyen, G. Yin
{"title":"随机逼近与不连续动力学,微分夹杂,和应用","authors":"N. Nguyen, G. Yin","doi":"10.1214/22-aap1829","DOIUrl":null,"url":null,"abstract":"This work develops new results for stochastic approximation algorithms. The emphases are on treating algorithms and limits with discontinuities. The main ingredients include the use of differential inclusions, set-valued analysis, and non-smooth analysis, and stochastic differential inclusions. Under broad conditions, it is shown that a suitably scaled sequence of the iterates has a differential inclusion limit. In addition, it is shown for the first time that a centered and scaled sequence of the iterates converges weakly to a stochastic differential inclusion limit. The results are then used to treat several application examples including Markov decision process, Lasso algorithms, Pegasos algorithms, support vector machine classification, and learning. Some numerical demonstrations are also provided.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stochastic approximation with discontinuous dynamics, differential inclusions, and applications\",\"authors\":\"N. Nguyen, G. Yin\",\"doi\":\"10.1214/22-aap1829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work develops new results for stochastic approximation algorithms. The emphases are on treating algorithms and limits with discontinuities. The main ingredients include the use of differential inclusions, set-valued analysis, and non-smooth analysis, and stochastic differential inclusions. Under broad conditions, it is shown that a suitably scaled sequence of the iterates has a differential inclusion limit. In addition, it is shown for the first time that a centered and scaled sequence of the iterates converges weakly to a stochastic differential inclusion limit. The results are then used to treat several application examples including Markov decision process, Lasso algorithms, Pegasos algorithms, support vector machine classification, and learning. Some numerical demonstrations are also provided.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1829\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1829","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

这项工作为随机近似算法提供了新的结果。重点是用不连续来处理算法和极限。其主要成分包括微分内含物、集值分析、非光滑分析和随机微分内含物的使用。在广义条件下,证明了适当缩放的迭代序列具有微分包含极限。此外,还首次证明了迭代的中心缩放序列弱收敛于随机微分包含极限。然后将结果用于处理几个应用示例,包括马尔可夫决策过程、Lasso算法、Pegasos算法、支持向量机分类和学习。并给出了一些数值演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic approximation with discontinuous dynamics, differential inclusions, and applications
This work develops new results for stochastic approximation algorithms. The emphases are on treating algorithms and limits with discontinuities. The main ingredients include the use of differential inclusions, set-valued analysis, and non-smooth analysis, and stochastic differential inclusions. Under broad conditions, it is shown that a suitably scaled sequence of the iterates has a differential inclusion limit. In addition, it is shown for the first time that a centered and scaled sequence of the iterates converges weakly to a stochastic differential inclusion limit. The results are then used to treat several application examples including Markov decision process, Lasso algorithms, Pegasos algorithms, support vector machine classification, and learning. Some numerical demonstrations are also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信