埃塞俄比亚阿姆哈拉东部Kombolcha平原地下水化学主要控制源评价

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES
Berihu Abadi Berhe, Fethangest Woldemariyam Tesema, G. Mebrahtu
{"title":"埃塞俄比亚阿姆哈拉东部Kombolcha平原地下水化学主要控制源评价","authors":"Berihu Abadi Berhe, Fethangest Woldemariyam Tesema, G. Mebrahtu","doi":"10.4314/mejs.v13i1.2","DOIUrl":null,"url":null,"abstract":"The study area, Kombolcha town, forms an important industrial town situated in the Eastern Amhara region, Ethiopia. The geology of the area is mainly composed of basalts, rhyolitic ignimbrites, and Quaternary sediments. Hydrogeochemistry and the source of ions in the groundwater of the study area are poorly understood. Therefore, the current study aims to assess the factors and the different hydrochemical processes significantly controlling groundwater quality, source, and chemistry. For this purpose, a total of eighteen groundwater samples were collected using 250 ml sampling bottles at selected points in the dry season (May 2017) and wet season (November 2017). Gibbs diagram, correlation analysis, scatter plots of ionic molar ratio relations, saturation index values (estimated using PHREEQC Interactive 2.8) were used to decipher the hydrogeochemical process. Gibbs diagram shows that the rock-water interaction process is the predominant, Na+/Cl- and Ca2+/Mg2+ molar ratio value of all groundwater samples in both seasons reveals that the groundwater chemistry of the area is controlled by silicate minerals weathering. The strong correlation of Ca2+ with Mg2+ in the dry season, and Ca2+ with HCO3- and Na+ with HCO3- in the wet season could also be an indication of silicate weathering and ion exchange processes. The impact of anthropogenic practices on groundwater chemistry is also seen from the strong correlation of Ca2+ with Cl-, NO3-, PO43- and F-, NO2- with K+, Mg2+, and PO43- , PO43- with F- , and NO3- with Na+, Cl-, HCO3- . The negative values of chloro-alkaline indices in both seasons indicate base-exchange reaction where an indirect exchange of Ca2+ and Mg2+ of the water with Na+ and K+ of the host rock occurs. Saturation indices results for the wet season show that the groundwater is under-saturated with respect to calcite, aragonite, dolomite, gypsum, and anhydrite. In the dry season, however, some of the waters are oversaturated with respect to calcite and aragonite. To sum up, the groundwater quality of the study area is controlled by geological processes and anthropogenic effects.","PeriodicalId":18948,"journal":{"name":"Momona Ethiopian Journal of Science","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Major Sources Controlling Groundwater Chemistry in Kombolcha Plain, Eastern Amhara Region, Ethiopia\",\"authors\":\"Berihu Abadi Berhe, Fethangest Woldemariyam Tesema, G. Mebrahtu\",\"doi\":\"10.4314/mejs.v13i1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study area, Kombolcha town, forms an important industrial town situated in the Eastern Amhara region, Ethiopia. The geology of the area is mainly composed of basalts, rhyolitic ignimbrites, and Quaternary sediments. Hydrogeochemistry and the source of ions in the groundwater of the study area are poorly understood. Therefore, the current study aims to assess the factors and the different hydrochemical processes significantly controlling groundwater quality, source, and chemistry. For this purpose, a total of eighteen groundwater samples were collected using 250 ml sampling bottles at selected points in the dry season (May 2017) and wet season (November 2017). Gibbs diagram, correlation analysis, scatter plots of ionic molar ratio relations, saturation index values (estimated using PHREEQC Interactive 2.8) were used to decipher the hydrogeochemical process. Gibbs diagram shows that the rock-water interaction process is the predominant, Na+/Cl- and Ca2+/Mg2+ molar ratio value of all groundwater samples in both seasons reveals that the groundwater chemistry of the area is controlled by silicate minerals weathering. The strong correlation of Ca2+ with Mg2+ in the dry season, and Ca2+ with HCO3- and Na+ with HCO3- in the wet season could also be an indication of silicate weathering and ion exchange processes. The impact of anthropogenic practices on groundwater chemistry is also seen from the strong correlation of Ca2+ with Cl-, NO3-, PO43- and F-, NO2- with K+, Mg2+, and PO43- , PO43- with F- , and NO3- with Na+, Cl-, HCO3- . The negative values of chloro-alkaline indices in both seasons indicate base-exchange reaction where an indirect exchange of Ca2+ and Mg2+ of the water with Na+ and K+ of the host rock occurs. Saturation indices results for the wet season show that the groundwater is under-saturated with respect to calcite, aragonite, dolomite, gypsum, and anhydrite. In the dry season, however, some of the waters are oversaturated with respect to calcite and aragonite. To sum up, the groundwater quality of the study area is controlled by geological processes and anthropogenic effects.\",\"PeriodicalId\":18948,\"journal\":{\"name\":\"Momona Ethiopian Journal of Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Momona Ethiopian Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/mejs.v13i1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Momona Ethiopian Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/mejs.v13i1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

研究区域Kombolcha镇是埃塞俄比亚阿姆哈拉东部地区的一个重要工业城镇。该地区的地质主要由玄武岩、流纹质熔结凝灰岩和第四纪沉积物组成。对研究区域地下水中的水文地球化学和离子来源了解甚少。因此,本研究旨在评估显著控制地下水质量、来源和化学的因素和不同的水化学过程。为此,在旱季(2017年5月)和雨季(2017年11月)的选定地点,使用250 ml取样瓶共采集了18个地下水样本。吉布斯图、相关分析、离子摩尔比关系的散点图、饱和指数值(使用PHREEQC Interactive 2.8估计)用于解读水文地球化学过程。吉布斯图表明,岩水相互作用过程占主导地位,两个季节所有地下水样品的Na+/Cl-和Ca2+/Mg2+摩尔比值表明,该地区的地下水化学受硅酸盐矿物风化作用的控制。旱季Ca2+与Mg2+、雨季Ca2+与HCO3-、Na+与HCO3-的强相关性也可能是硅酸盐风化和离子交换过程的指示。从Ca2+与Cl-、NO3-、PO43-和F-、NO2-与K+、Mg2+和PO43-、PO43-与F-以及NO3-与Na+、Cl-、HCO3-的强相关性也可以看出人为活动对地下水化学的影响。两个季节的氯碱性指数的负值表明碱交换反应,其中水的Ca2+和Mg2+与寄主岩石的Na+和K+发生间接交换。雨季的饱和指数结果表明,地下水对方解石、霰石、白云石、石膏和硬石膏的饱和程度较低。然而,在旱季,一些水域的方解石和霰石过度饱和。综上所述,研究区的地下水水质受地质过程和人为影响的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Major Sources Controlling Groundwater Chemistry in Kombolcha Plain, Eastern Amhara Region, Ethiopia
The study area, Kombolcha town, forms an important industrial town situated in the Eastern Amhara region, Ethiopia. The geology of the area is mainly composed of basalts, rhyolitic ignimbrites, and Quaternary sediments. Hydrogeochemistry and the source of ions in the groundwater of the study area are poorly understood. Therefore, the current study aims to assess the factors and the different hydrochemical processes significantly controlling groundwater quality, source, and chemistry. For this purpose, a total of eighteen groundwater samples were collected using 250 ml sampling bottles at selected points in the dry season (May 2017) and wet season (November 2017). Gibbs diagram, correlation analysis, scatter plots of ionic molar ratio relations, saturation index values (estimated using PHREEQC Interactive 2.8) were used to decipher the hydrogeochemical process. Gibbs diagram shows that the rock-water interaction process is the predominant, Na+/Cl- and Ca2+/Mg2+ molar ratio value of all groundwater samples in both seasons reveals that the groundwater chemistry of the area is controlled by silicate minerals weathering. The strong correlation of Ca2+ with Mg2+ in the dry season, and Ca2+ with HCO3- and Na+ with HCO3- in the wet season could also be an indication of silicate weathering and ion exchange processes. The impact of anthropogenic practices on groundwater chemistry is also seen from the strong correlation of Ca2+ with Cl-, NO3-, PO43- and F-, NO2- with K+, Mg2+, and PO43- , PO43- with F- , and NO3- with Na+, Cl-, HCO3- . The negative values of chloro-alkaline indices in both seasons indicate base-exchange reaction where an indirect exchange of Ca2+ and Mg2+ of the water with Na+ and K+ of the host rock occurs. Saturation indices results for the wet season show that the groundwater is under-saturated with respect to calcite, aragonite, dolomite, gypsum, and anhydrite. In the dry season, however, some of the waters are oversaturated with respect to calcite and aragonite. To sum up, the groundwater quality of the study area is controlled by geological processes and anthropogenic effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Momona Ethiopian Journal of Science
Momona Ethiopian Journal of Science MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
13
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信