Rattanasak Hongthong, Apai Benchaphong, Sutera Benchanukrom, N. Konkong
{"title":"冷弯型钢结构螺纹连接的试验与理论研究","authors":"Rattanasak Hongthong, Apai Benchaphong, Sutera Benchanukrom, N. Konkong","doi":"10.24423/ENGTRANS.1016.20191119","DOIUrl":null,"url":null,"abstract":"This research aims to study the fastening rotation behavior of cold-formed steel screw connections by experimental testing and analytical modelling. Both the experimental test and finite element results showed the failure modes of tilting and bearing failure. The rotation failure mode of the screw connection was studied by an analytical method using a spring model with screw-plate stiffness which included the bending and shear stiffness of the screw and the bearing stiffness of the screw and plates. Variation in the screw thread diameter, plate thickness, and plate thickness ratio are assigned to the spring model for the parametric study. The screw rotation or tilting was primarily controlled by the plate thickness. Presented results show that to decrease the effect of tilting failure, the end of the screw should be embedded within the thickest side of the cold-formed steel parts.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":"67 1","pages":"557-577"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental and Theoretical Study on Screwed Connections in Cold-Formed Steel Structure\",\"authors\":\"Rattanasak Hongthong, Apai Benchaphong, Sutera Benchanukrom, N. Konkong\",\"doi\":\"10.24423/ENGTRANS.1016.20191119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to study the fastening rotation behavior of cold-formed steel screw connections by experimental testing and analytical modelling. Both the experimental test and finite element results showed the failure modes of tilting and bearing failure. The rotation failure mode of the screw connection was studied by an analytical method using a spring model with screw-plate stiffness which included the bending and shear stiffness of the screw and the bearing stiffness of the screw and plates. Variation in the screw thread diameter, plate thickness, and plate thickness ratio are assigned to the spring model for the parametric study. The screw rotation or tilting was primarily controlled by the plate thickness. Presented results show that to decrease the effect of tilting failure, the end of the screw should be embedded within the thickest side of the cold-formed steel parts.\",\"PeriodicalId\":38552,\"journal\":{\"name\":\"Engineering Transactions\",\"volume\":\"67 1\",\"pages\":\"557-577\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24423/ENGTRANS.1016.20191119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.1016.20191119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Experimental and Theoretical Study on Screwed Connections in Cold-Formed Steel Structure
This research aims to study the fastening rotation behavior of cold-formed steel screw connections by experimental testing and analytical modelling. Both the experimental test and finite element results showed the failure modes of tilting and bearing failure. The rotation failure mode of the screw connection was studied by an analytical method using a spring model with screw-plate stiffness which included the bending and shear stiffness of the screw and the bearing stiffness of the screw and plates. Variation in the screw thread diameter, plate thickness, and plate thickness ratio are assigned to the spring model for the parametric study. The screw rotation or tilting was primarily controlled by the plate thickness. Presented results show that to decrease the effect of tilting failure, the end of the screw should be embedded within the thickest side of the cold-formed steel parts.
期刊介绍:
Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.