关于Maxwell–Klein–Gordon方程的全局动力学

IF 1.8 2区 数学 Q1 MATHEMATICS
Shiwu Yang, P. Yu
{"title":"关于Maxwell–Klein–Gordon方程的全局动力学","authors":"Shiwu Yang, P. Yu","doi":"10.4310/cjm.2019.v7.n4.a1","DOIUrl":null,"url":null,"abstract":"On the three dimensional Euclidean space, for data with finite energy, it is well-known that the Maxwell-Klein-Gordon equations admit global solutions. However, the asymptotic behaviours of the solutions for the data with non-vanishing charge and arbitrary large size are unknown. It is conjectured that the solutions disperse as linear waves and enjoy the so-called peeling properties for pointwise estimates. We provide a gauge independent proof of the conjecture.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2018-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"On global dynamics of the Maxwell–Klein–Gordon equations\",\"authors\":\"Shiwu Yang, P. Yu\",\"doi\":\"10.4310/cjm.2019.v7.n4.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the three dimensional Euclidean space, for data with finite energy, it is well-known that the Maxwell-Klein-Gordon equations admit global solutions. However, the asymptotic behaviours of the solutions for the data with non-vanishing charge and arbitrary large size are unknown. It is conjectured that the solutions disperse as linear waves and enjoy the so-called peeling properties for pointwise estimates. We provide a gauge independent proof of the conjecture.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2018-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2019.v7.n4.a1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2019.v7.n4.a1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

摘要

在三维欧氏空间上,对于能量有限的数据,众所周知,Maxwell-Klein-Gordon方程允许全局解。然而,具有非消失电荷和任意大尺寸数据的解的渐近性质是未知的。据推测,解以线性波的形式分散,并具有逐点估计的所谓剥离性质。我们为这个猜想提供了一个与规范无关的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On global dynamics of the Maxwell–Klein–Gordon equations
On the three dimensional Euclidean space, for data with finite energy, it is well-known that the Maxwell-Klein-Gordon equations admit global solutions. However, the asymptotic behaviours of the solutions for the data with non-vanishing charge and arbitrary large size are unknown. It is conjectured that the solutions disperse as linear waves and enjoy the so-called peeling properties for pointwise estimates. We provide a gauge independent proof of the conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信