Boniphace Kanyathare, Kalle Kuivalainen, Jukka Räty, Pertti Silfsten, Prince Bawuah, Kai-Erik Peiponen
{"title":"一种用于识别掺有煤油的柴油的光学传感器的原型","authors":"Boniphace Kanyathare, Kalle Kuivalainen, Jukka Räty, Pertti Silfsten, Prince Bawuah, Kai-Erik Peiponen","doi":"10.1186/s41476-018-0071-2","DOIUrl":null,"url":null,"abstract":"<p>Liquid fuel adulteration has several far-reaching impacts such as environmental pollution. A widespread practice is typically the adulteration of diesel oil by kerosene. The relatively cheap price of kerosene is probably the most important reason for its usage in illegal adulteration. Herein, we demonstrate the use of a prototype optical sensor for efficient tracking of adulterated diesel oil.</p><p>In this study, a prototype of an optical sensor for screening of fake diesel oil is proposed. The device exploits the phenomenon of laser light reflection from a fuel film over a roughened glass plate. The sensing mechanism of the devise is based on the refractive index mismatch between the glass and the fuel sample, and the wetting property of the fuel film over the roughened surface. For the sake of comparison, the refractive index for each of the fuel samples was measured at room temperature with the aid of an automatic temperature controlled Abbe table refractometer. The sensitivity of this prototype optical sensor was tested using training sets of diesel oil samples adulterated with low concentrations of kerosene.</p><p>Originally, a commercial handheld glossmeter, with a new innovation of a removable sensor head for liquid inspection is presented as a prototype sensor for the screening of possible adulteration of diesel oils with kerosene. The significant difference in the signal readings obtained from carefully prepared training sets of adulterated diesel oil composed of low percentages (5–15%) of kerosene has proven the high sensitivity of the developed sensor.</p><p>The ability to detect low concentrations of kerosene in diesel using the newly developed hand-held prototype sensor proves its high sensitivity compared to a high-accuracy Abbe refractometer. We envisage that this proposed sensor could, in the future, be made accessible to the authorities as a mobile fake fuel measurement unit<b>.</b></p>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"14 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2018-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41476-018-0071-2","citationCount":"20","resultStr":"{\"title\":\"A prototype of an optical sensor for the identification of diesel oil adulterated by kerosene\",\"authors\":\"Boniphace Kanyathare, Kalle Kuivalainen, Jukka Räty, Pertti Silfsten, Prince Bawuah, Kai-Erik Peiponen\",\"doi\":\"10.1186/s41476-018-0071-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Liquid fuel adulteration has several far-reaching impacts such as environmental pollution. A widespread practice is typically the adulteration of diesel oil by kerosene. The relatively cheap price of kerosene is probably the most important reason for its usage in illegal adulteration. Herein, we demonstrate the use of a prototype optical sensor for efficient tracking of adulterated diesel oil.</p><p>In this study, a prototype of an optical sensor for screening of fake diesel oil is proposed. The device exploits the phenomenon of laser light reflection from a fuel film over a roughened glass plate. The sensing mechanism of the devise is based on the refractive index mismatch between the glass and the fuel sample, and the wetting property of the fuel film over the roughened surface. For the sake of comparison, the refractive index for each of the fuel samples was measured at room temperature with the aid of an automatic temperature controlled Abbe table refractometer. The sensitivity of this prototype optical sensor was tested using training sets of diesel oil samples adulterated with low concentrations of kerosene.</p><p>Originally, a commercial handheld glossmeter, with a new innovation of a removable sensor head for liquid inspection is presented as a prototype sensor for the screening of possible adulteration of diesel oils with kerosene. The significant difference in the signal readings obtained from carefully prepared training sets of adulterated diesel oil composed of low percentages (5–15%) of kerosene has proven the high sensitivity of the developed sensor.</p><p>The ability to detect low concentrations of kerosene in diesel using the newly developed hand-held prototype sensor proves its high sensitivity compared to a high-accuracy Abbe refractometer. We envisage that this proposed sensor could, in the future, be made accessible to the authorities as a mobile fake fuel measurement unit<b>.</b></p>\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2018-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s41476-018-0071-2\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41476-018-0071-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-018-0071-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
A prototype of an optical sensor for the identification of diesel oil adulterated by kerosene
Liquid fuel adulteration has several far-reaching impacts such as environmental pollution. A widespread practice is typically the adulteration of diesel oil by kerosene. The relatively cheap price of kerosene is probably the most important reason for its usage in illegal adulteration. Herein, we demonstrate the use of a prototype optical sensor for efficient tracking of adulterated diesel oil.
In this study, a prototype of an optical sensor for screening of fake diesel oil is proposed. The device exploits the phenomenon of laser light reflection from a fuel film over a roughened glass plate. The sensing mechanism of the devise is based on the refractive index mismatch between the glass and the fuel sample, and the wetting property of the fuel film over the roughened surface. For the sake of comparison, the refractive index for each of the fuel samples was measured at room temperature with the aid of an automatic temperature controlled Abbe table refractometer. The sensitivity of this prototype optical sensor was tested using training sets of diesel oil samples adulterated with low concentrations of kerosene.
Originally, a commercial handheld glossmeter, with a new innovation of a removable sensor head for liquid inspection is presented as a prototype sensor for the screening of possible adulteration of diesel oils with kerosene. The significant difference in the signal readings obtained from carefully prepared training sets of adulterated diesel oil composed of low percentages (5–15%) of kerosene has proven the high sensitivity of the developed sensor.
The ability to detect low concentrations of kerosene in diesel using the newly developed hand-held prototype sensor proves its high sensitivity compared to a high-accuracy Abbe refractometer. We envisage that this proposed sensor could, in the future, be made accessible to the authorities as a mobile fake fuel measurement unit.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.