A. Ajani, Ademola Toheeb Adeniji, Samson Shina Ayodabo, A. Alade, T. Afolabi, S. O. Ganiyu
{"title":"H3PO4改性复合粘土去除水中双氯芬酸钠","authors":"A. Ajani, Ademola Toheeb Adeniji, Samson Shina Ayodabo, A. Alade, T. Afolabi, S. O. Ganiyu","doi":"10.15328/cb1274","DOIUrl":null,"url":null,"abstract":"Under batch experiment conditions, this work seeks to successfully remove Diclofenac-Na (DCF-Na) from an aqueous solution utilizing a composite sorbent made of Bentonite, Kaolinite clay, and Worm casting (BKW). This study investigated the structural modification of the H3PO4 Modified Clay by X-ray fluorescence and the effect of selected adsorption factors – DCF-Na concentration and modified BKW composite dosage. The concentration equilibrium data was used to study six isotherm models. Freundlich isotherm model better explained the adsorption of DCF-Na onto modified BKW composite with a correlation coefficient close to 1. Kinetics models were examined, and the Elovich model gave a better fit than other kinetic models studied. Mass diffusion mechanisms and thermodynamics studies were successfully carried out. The enthalpy change values evaluated were negative, which revealed the spontaneity of DCF-Na remediation onto modified BKW, and that DCF-Na adsorption is exothermic and occurred through a physisorption process.","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of Diclofenac-Na from aqueous solution onto H3PO4 modified composite clay\",\"authors\":\"A. Ajani, Ademola Toheeb Adeniji, Samson Shina Ayodabo, A. Alade, T. Afolabi, S. O. Ganiyu\",\"doi\":\"10.15328/cb1274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under batch experiment conditions, this work seeks to successfully remove Diclofenac-Na (DCF-Na) from an aqueous solution utilizing a composite sorbent made of Bentonite, Kaolinite clay, and Worm casting (BKW). This study investigated the structural modification of the H3PO4 Modified Clay by X-ray fluorescence and the effect of selected adsorption factors – DCF-Na concentration and modified BKW composite dosage. The concentration equilibrium data was used to study six isotherm models. Freundlich isotherm model better explained the adsorption of DCF-Na onto modified BKW composite with a correlation coefficient close to 1. Kinetics models were examined, and the Elovich model gave a better fit than other kinetic models studied. Mass diffusion mechanisms and thermodynamics studies were successfully carried out. The enthalpy change values evaluated were negative, which revealed the spontaneity of DCF-Na remediation onto modified BKW, and that DCF-Na adsorption is exothermic and occurred through a physisorption process.\",\"PeriodicalId\":9860,\"journal\":{\"name\":\"Chemical Bulletin of Kazakh National University\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Bulletin of Kazakh National University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15328/cb1274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Bulletin of Kazakh National University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15328/cb1274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Removal of Diclofenac-Na from aqueous solution onto H3PO4 modified composite clay
Under batch experiment conditions, this work seeks to successfully remove Diclofenac-Na (DCF-Na) from an aqueous solution utilizing a composite sorbent made of Bentonite, Kaolinite clay, and Worm casting (BKW). This study investigated the structural modification of the H3PO4 Modified Clay by X-ray fluorescence and the effect of selected adsorption factors – DCF-Na concentration and modified BKW composite dosage. The concentration equilibrium data was used to study six isotherm models. Freundlich isotherm model better explained the adsorption of DCF-Na onto modified BKW composite with a correlation coefficient close to 1. Kinetics models were examined, and the Elovich model gave a better fit than other kinetic models studied. Mass diffusion mechanisms and thermodynamics studies were successfully carried out. The enthalpy change values evaluated were negative, which revealed the spontaneity of DCF-Na remediation onto modified BKW, and that DCF-Na adsorption is exothermic and occurred through a physisorption process.