球面上随机切线场的分数阶随机偏微分方程

IF 0.4 Q4 STATISTICS & PROBABILITY
V. Anh, A. Olenko, Yu Guang Wang
{"title":"球面上随机切线场的分数阶随机偏微分方程","authors":"V. Anh, A. Olenko, Yu Guang Wang","doi":"10.1090/tpms/1142","DOIUrl":null,"url":null,"abstract":"This paper develops a fractional stochastic partial differential equation (SPDE) to model the evolution of a random tangent vector field on the unit sphere. The SPDE is governed by a fractional diffusion operator to model the Lévy-type behaviour of the spatial solution, a fractional derivative in time to depict the intermittency of its temporal solution, and is driven by vector-valued fractional Brownian motion on the unit sphere to characterize its temporal long-range dependence. The solution to the SPDE is presented in the form of the Karhunen-Loève expansion in terms of vector spherical harmonics. Its covariance matrix function is established as a tensor field on the unit sphere that is an expansion of Legendre tensor kernels. The variance of the increments and approximations to the solutions are studied and convergence rates of the approximation errors are given. It is demonstrated how these convergence rates depend on the decay of the power spectrum and variances of the fractional Brownian motion.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fractional stochastic partial differential equation for random tangent fields on the sphere\",\"authors\":\"V. Anh, A. Olenko, Yu Guang Wang\",\"doi\":\"10.1090/tpms/1142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a fractional stochastic partial differential equation (SPDE) to model the evolution of a random tangent vector field on the unit sphere. The SPDE is governed by a fractional diffusion operator to model the Lévy-type behaviour of the spatial solution, a fractional derivative in time to depict the intermittency of its temporal solution, and is driven by vector-valued fractional Brownian motion on the unit sphere to characterize its temporal long-range dependence. The solution to the SPDE is presented in the form of the Karhunen-Loève expansion in terms of vector spherical harmonics. Its covariance matrix function is established as a tensor field on the unit sphere that is an expansion of Legendre tensor kernels. The variance of the increments and approximations to the solutions are studied and convergence rates of the approximation errors are given. It is demonstrated how these convergence rates depend on the decay of the power spectrum and variances of the fractional Brownian motion.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

本文发展了一个分数阶随机偏微分方程(SPDE)来模拟单位球面上随机切向量场的演化。SPDE由分数扩散算子控制,以对空间解的Lévy型行为建模,时间上的分数导数描述其时间解的间歇性,并由单位球面上的向量值分数布朗运动驱动,以表征其时间-长程依赖性。SPDE的解以向量球谐波的Karhunen-Loève展开形式给出。它的协方差矩阵函数被建立为单位球面上的张量场,该张量场是勒让德张量核的扩展。研究了解的增量和近似的方差,给出了近似误差的收敛速度。证明了这些收敛速度如何取决于分数布朗运动的功率谱衰减和方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional stochastic partial differential equation for random tangent fields on the sphere
This paper develops a fractional stochastic partial differential equation (SPDE) to model the evolution of a random tangent vector field on the unit sphere. The SPDE is governed by a fractional diffusion operator to model the Lévy-type behaviour of the spatial solution, a fractional derivative in time to depict the intermittency of its temporal solution, and is driven by vector-valued fractional Brownian motion on the unit sphere to characterize its temporal long-range dependence. The solution to the SPDE is presented in the form of the Karhunen-Loève expansion in terms of vector spherical harmonics. Its covariance matrix function is established as a tensor field on the unit sphere that is an expansion of Legendre tensor kernels. The variance of the increments and approximations to the solutions are studied and convergence rates of the approximation errors are given. It is demonstrated how these convergence rates depend on the decay of the power spectrum and variances of the fractional Brownian motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信