{"title":"广义超调和数的Euler和","authors":"Rusen Li","doi":"10.7169/facm/1953","DOIUrl":null,"url":null,"abstract":"are the generalized hyperharmonic numbers (see [4, 10]). Furthermore, H (p,1) n = H (p) n = ∑n j=1 1/n p are the generalized harmonic numbers and H (1,r) n = h (r) n are the classical hyperharmonic numbers. In particularH (1,1) n = Hn are the classical harmonic numbers. Many researchers have been studying Euler sums of harmonic and hyperharmonic numbers (see [4, 6, 7, 9] and references therein), since they play","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Euler sums of generalized hyperharmonic numbers\",\"authors\":\"Rusen Li\",\"doi\":\"10.7169/facm/1953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"are the generalized hyperharmonic numbers (see [4, 10]). Furthermore, H (p,1) n = H (p) n = ∑n j=1 1/n p are the generalized harmonic numbers and H (1,r) n = h (r) n are the classical hyperharmonic numbers. In particularH (1,1) n = Hn are the classical harmonic numbers. Many researchers have been studying Euler sums of harmonic and hyperharmonic numbers (see [4, 6, 7, 9] and references therein), since they play\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
是普通的超谐波数字(见[4,10])。Furthermore, H (p, 1) n = H (p) n =∑n j = 1 / n p generalized是调和定律数字1和H (r, r) n = H (n)是《古典hyperharmonic数字。特别是特别是许多研究人员自从他们开始演奏以来,一直在研究Euler的和声和超谐波数字(见[4,6,7,9]和therein引用)
are the generalized hyperharmonic numbers (see [4, 10]). Furthermore, H (p,1) n = H (p) n = ∑n j=1 1/n p are the generalized harmonic numbers and H (1,r) n = h (r) n are the classical hyperharmonic numbers. In particularH (1,1) n = Hn are the classical harmonic numbers. Many researchers have been studying Euler sums of harmonic and hyperharmonic numbers (see [4, 6, 7, 9] and references therein), since they play