{"title":"离散加热电子板共轭对流的数值研究","authors":"Naveen Kumar Battula, Srinu Daravath, G. K. Gampa","doi":"10.1108/wje-01-2022-0018","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper deals with numerical studies into combined conduction, convection and radiation from a heated vertical electronic board are provided here.\n\n\nDesign/methodology/approach\nHere three inbuilt heaters with decrease in their heights were placed in the vertical electronic board. With respect to the non-heat portions, two configurations were studied. The first considers the non-heat portions to be adiabatic, while in the second, they are non-adiabatic. The heat that is produced in three heaters is conducted along the board and is dissipated either from the heater portions alone or from the whole board by convection and radiation. Air is considered as working medium, while the equations of heat transfer and flow of fluid are handled without boundary layer approximations. These equations were further solved using finite volume method with Gauss–Seidel iteration method.\n\n\nFindings\nResults of various comparative studies were discussed to bring out the relevance of thermal conductivity, modified Richardson number and surface emissivity on different heat transfer and flow results concerning this problem.\n\n\nOriginality/value\nThe optimum values of surface emissivity, thermal conductivity and modified Richardson number have also been notionally explored.\n","PeriodicalId":23852,"journal":{"name":"World Journal of Engineering","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical studies on conjugate convection from discretely heated electronic board\",\"authors\":\"Naveen Kumar Battula, Srinu Daravath, G. K. Gampa\",\"doi\":\"10.1108/wje-01-2022-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis paper deals with numerical studies into combined conduction, convection and radiation from a heated vertical electronic board are provided here.\\n\\n\\nDesign/methodology/approach\\nHere three inbuilt heaters with decrease in their heights were placed in the vertical electronic board. With respect to the non-heat portions, two configurations were studied. The first considers the non-heat portions to be adiabatic, while in the second, they are non-adiabatic. The heat that is produced in three heaters is conducted along the board and is dissipated either from the heater portions alone or from the whole board by convection and radiation. Air is considered as working medium, while the equations of heat transfer and flow of fluid are handled without boundary layer approximations. These equations were further solved using finite volume method with Gauss–Seidel iteration method.\\n\\n\\nFindings\\nResults of various comparative studies were discussed to bring out the relevance of thermal conductivity, modified Richardson number and surface emissivity on different heat transfer and flow results concerning this problem.\\n\\n\\nOriginality/value\\nThe optimum values of surface emissivity, thermal conductivity and modified Richardson number have also been notionally explored.\\n\",\"PeriodicalId\":23852,\"journal\":{\"name\":\"World Journal of Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/wje-01-2022-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/wje-01-2022-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical studies on conjugate convection from discretely heated electronic board
Purpose
This paper deals with numerical studies into combined conduction, convection and radiation from a heated vertical electronic board are provided here.
Design/methodology/approach
Here three inbuilt heaters with decrease in their heights were placed in the vertical electronic board. With respect to the non-heat portions, two configurations were studied. The first considers the non-heat portions to be adiabatic, while in the second, they are non-adiabatic. The heat that is produced in three heaters is conducted along the board and is dissipated either from the heater portions alone or from the whole board by convection and radiation. Air is considered as working medium, while the equations of heat transfer and flow of fluid are handled without boundary layer approximations. These equations were further solved using finite volume method with Gauss–Seidel iteration method.
Findings
Results of various comparative studies were discussed to bring out the relevance of thermal conductivity, modified Richardson number and surface emissivity on different heat transfer and flow results concerning this problem.
Originality/value
The optimum values of surface emissivity, thermal conductivity and modified Richardson number have also been notionally explored.
期刊介绍:
The main focus of the World Journal of Engineering (WJE) is on, but not limited to; Civil Engineering, Material and Mechanical Engineering, Electrical and Electronic Engineering, Geotechnical and Mining Engineering, Nanoengineering and Nanoscience The journal bridges the gap between materials science and materials engineering, and between nano-engineering and nano-science. A distinguished editorial board assists the Editor-in-Chief, Professor Sun. All papers undergo a double-blind peer review process. For a full list of the journal''s esteemed review board, please see below.