用于人机界面交互应用的手势识别电阻抗断层扫描

IF 1.6 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Noelia Vaquero-Gallardo, H. Martínez-García
{"title":"用于人机界面交互应用的手势识别电阻抗断层扫描","authors":"Noelia Vaquero-Gallardo, H. Martínez-García","doi":"10.3390/jlpea12030041","DOIUrl":null,"url":null,"abstract":"Electrical impedance tomography (EIT) is based on the physical principle of bioimpedance defined as the opposition that biological tissues exhibit to the flow of a rotating alternating electrical current. Consequently, here, we propose studying the characterization and classification of bioimpedance patterns based on EIT by measuring, on the forearm with eight electrodes in a non-invasive way, the potential drops resulting from the execution of six hand gestures. The starting point was the acquisition of bioimpedance patterns studied by means of principal component analysis (PCA), validated through the cross-validation technique, and classified using the k-nearest neighbor (kNN) classification algorithm. As a result, it is concluded that reduction and classification is feasible, with a sensitivity of 0.89 in the worst case, for each of the reduced bioimpedance patterns, leading to the following direct advantage: a reduction in the numbers of electrodes and electronics required. In this work, bioimpedance patterns were investigated for monitoring subjects’ mobility, where, generally, these solutions are based on a sensor system with moving parts that suffer from significant problems of wear, lack of adaptability to the patient, and lack of resolution. Whereas, the proposal implemented in this prototype, based on the so-called electrical impedance tomography, does not have these problems.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electrical Impedance Tomography for Hand Gesture Recognition for HMI Interaction Applications\",\"authors\":\"Noelia Vaquero-Gallardo, H. Martínez-García\",\"doi\":\"10.3390/jlpea12030041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical impedance tomography (EIT) is based on the physical principle of bioimpedance defined as the opposition that biological tissues exhibit to the flow of a rotating alternating electrical current. Consequently, here, we propose studying the characterization and classification of bioimpedance patterns based on EIT by measuring, on the forearm with eight electrodes in a non-invasive way, the potential drops resulting from the execution of six hand gestures. The starting point was the acquisition of bioimpedance patterns studied by means of principal component analysis (PCA), validated through the cross-validation technique, and classified using the k-nearest neighbor (kNN) classification algorithm. As a result, it is concluded that reduction and classification is feasible, with a sensitivity of 0.89 in the worst case, for each of the reduced bioimpedance patterns, leading to the following direct advantage: a reduction in the numbers of electrodes and electronics required. In this work, bioimpedance patterns were investigated for monitoring subjects’ mobility, where, generally, these solutions are based on a sensor system with moving parts that suffer from significant problems of wear, lack of adaptability to the patient, and lack of resolution. Whereas, the proposal implemented in this prototype, based on the so-called electrical impedance tomography, does not have these problems.\",\"PeriodicalId\":38100,\"journal\":{\"name\":\"Journal of Low Power Electronics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jlpea12030041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea12030041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

电阻抗断层扫描(EIT)是基于生物阻抗的物理原理,定义为生物组织对旋转交变电流的反对。因此,在此,我们建议研究基于EIT的生物阻抗模式的表征和分类,通过在前臂上以非侵入方式测量8个电极,执行6个手势产生的电位下降。首先通过主成分分析(PCA)获取生物阻抗模式,通过交叉验证技术进行验证,并使用k-最近邻(kNN)分类算法进行分类。因此,得出的结论是,对每个减少的生物阻抗模式进行还原和分类是可行的,在最坏的情况下灵敏度为0.89,导致以下直接优势:所需电极和电子设备的数量减少。在这项工作中,研究了生物阻抗模式用于监测受试者的移动性,其中,通常,这些解决方案是基于具有运动部件的传感器系统,这些部件存在严重的磨损问题,对患者缺乏适应性,并且缺乏分辨率。然而,在这个原型中实现的建议,基于所谓的电阻抗断层扫描,没有这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical Impedance Tomography for Hand Gesture Recognition for HMI Interaction Applications
Electrical impedance tomography (EIT) is based on the physical principle of bioimpedance defined as the opposition that biological tissues exhibit to the flow of a rotating alternating electrical current. Consequently, here, we propose studying the characterization and classification of bioimpedance patterns based on EIT by measuring, on the forearm with eight electrodes in a non-invasive way, the potential drops resulting from the execution of six hand gestures. The starting point was the acquisition of bioimpedance patterns studied by means of principal component analysis (PCA), validated through the cross-validation technique, and classified using the k-nearest neighbor (kNN) classification algorithm. As a result, it is concluded that reduction and classification is feasible, with a sensitivity of 0.89 in the worst case, for each of the reduced bioimpedance patterns, leading to the following direct advantage: a reduction in the numbers of electrodes and electronics required. In this work, bioimpedance patterns were investigated for monitoring subjects’ mobility, where, generally, these solutions are based on a sensor system with moving parts that suffer from significant problems of wear, lack of adaptability to the patient, and lack of resolution. Whereas, the proposal implemented in this prototype, based on the so-called electrical impedance tomography, does not have these problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Low Power Electronics and Applications
Journal of Low Power Electronics and Applications Engineering-Electrical and Electronic Engineering
CiteScore
3.60
自引率
14.30%
发文量
57
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信