一种简化为Hessenberg三角形的新的分块算法

IF 0.7 4区 数学 Q2 Mathematics
Thijs Steel, R. Vandebril
{"title":"一种简化为Hessenberg三角形的新的分块算法","authors":"Thijs Steel, R. Vandebril","doi":"10.13001/ela.2022.6483","DOIUrl":null,"url":null,"abstract":"We present an alternative algorithm and implementation for theHessenberg-triangular reduction, an essential step in the QZalgorithm for solving generalized eigenvalue problems. Thereduction step has a cubic computational complexity, and hence,high-performance implementations are compulsory for keeping thecomputing time under control. Our algorithm is of simplemathematical nature and relies on the connection betweengeneralized and classical eigenvalue problems. Via system solving andthe classical reduction of a single matrix to Hessenberg form, we areable to get a theoretically equivalent reduction toHessenberg-triangular form. As a result, we can perform most of thecomputational work by relying on existing, highly efficient implementations,which make extensive use of blocking. The accompanying error analysisshows that preprocessing and iterative refinement can benecessary to achieve accurate results. Numerical results showcompetitiveness with existing implementations.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel, blocked algorithm for the reduction to Hessenberg-triangular form\",\"authors\":\"Thijs Steel, R. Vandebril\",\"doi\":\"10.13001/ela.2022.6483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an alternative algorithm and implementation for theHessenberg-triangular reduction, an essential step in the QZalgorithm for solving generalized eigenvalue problems. Thereduction step has a cubic computational complexity, and hence,high-performance implementations are compulsory for keeping thecomputing time under control. Our algorithm is of simplemathematical nature and relies on the connection betweengeneralized and classical eigenvalue problems. Via system solving andthe classical reduction of a single matrix to Hessenberg form, we areable to get a theoretically equivalent reduction toHessenberg-triangular form. As a result, we can perform most of thecomputational work by relying on existing, highly efficient implementations,which make extensive use of blocking. The accompanying error analysisshows that preprocessing and iterative refinement can benecessary to achieve accurate results. Numerical results showcompetitiveness with existing implementations.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.6483\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6483","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了Hessenberg三角约简的替代算法和实现,这是QZalgorithm算法中求解广义特征值问题的重要步骤。归约步骤具有三次计算复杂性,因此,为了控制计算时间,必须采用高性能实现。我们的算法具有简单的数学性质,并且依赖于广义特征值问题和经典特征值问题之间的联系。通过系统求解和将单个矩阵简化为Hesenberg形式的经典方法,我们可以得到理论上等价的Hesenberg三角形式的简化。因此,我们可以依靠现有的高效实现来执行大部分计算工作,这些实现广泛使用了块。伴随的误差分析表明,预处理和迭代精化有助于获得准确的结果。数值结果显示了与现有实现的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel, blocked algorithm for the reduction to Hessenberg-triangular form
We present an alternative algorithm and implementation for theHessenberg-triangular reduction, an essential step in the QZalgorithm for solving generalized eigenvalue problems. Thereduction step has a cubic computational complexity, and hence,high-performance implementations are compulsory for keeping thecomputing time under control. Our algorithm is of simplemathematical nature and relies on the connection betweengeneralized and classical eigenvalue problems. Via system solving andthe classical reduction of a single matrix to Hessenberg form, we areable to get a theoretically equivalent reduction toHessenberg-triangular form. As a result, we can perform most of thecomputational work by relying on existing, highly efficient implementations,which make extensive use of blocking. The accompanying error analysisshows that preprocessing and iterative refinement can benecessary to achieve accurate results. Numerical results showcompetitiveness with existing implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信