凸随机过程的Hermite-Hadamard型广义分数不等式

IF 0.4 Q4 MATHEMATICS
M. Omaba, E. Nwaeze
{"title":"凸随机过程的Hermite-Hadamard型广义分数不等式","authors":"M. Omaba, E. Nwaeze","doi":"10.2478/amsil-2020-0026","DOIUrl":null,"url":null,"abstract":"Abstract A generalization of the Hermite–Hadamard (HH) inequality for a positive convex stochastic process, by means of a newly proposed fractional integral operator, is hereby established. Results involving the Riemann– Liouville, Hadamard, Erdélyi–Kober, Katugampola, Weyl and Liouville fractional integrals are deduced as particular cases of our main result. In addition, we also apply some known HH results to obtain some estimates for the expectations of integrals of convex and p-convex stochastic processes. As a side note, we also pointed out a mistake in the main result of the paper [Hermite–Hadamard type inequalities, convex stochastic processes and Katugampola fractional integral, Revista Integración, temas de matemáticas 36 (2018), no. 2, 133–149]. We anticipate that the idea employed herein will inspire further research in this direction.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"35 1","pages":"90 - 104"},"PeriodicalIF":0.4000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generalized Fractional Inequalities of the Hermite–Hadamard Type for Convex Stochastic Processes\",\"authors\":\"M. Omaba, E. Nwaeze\",\"doi\":\"10.2478/amsil-2020-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A generalization of the Hermite–Hadamard (HH) inequality for a positive convex stochastic process, by means of a newly proposed fractional integral operator, is hereby established. Results involving the Riemann– Liouville, Hadamard, Erdélyi–Kober, Katugampola, Weyl and Liouville fractional integrals are deduced as particular cases of our main result. In addition, we also apply some known HH results to obtain some estimates for the expectations of integrals of convex and p-convex stochastic processes. As a side note, we also pointed out a mistake in the main result of the paper [Hermite–Hadamard type inequalities, convex stochastic processes and Katugampola fractional integral, Revista Integración, temas de matemáticas 36 (2018), no. 2, 133–149]. We anticipate that the idea employed herein will inspire further research in this direction.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"35 1\",\"pages\":\"90 - 104\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2020-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要利用一个新提出的分数阶积分算子,建立了正凸随机过程的Hermite-Hadamard (HH)不等式的推广。涉及Riemann - Liouville, Hadamard, erd - kober, Katugampola, Weyl和Liouville分数积分的结果作为我们主要结果的特殊情况推导出来。此外,我们还应用一些已知的HH结果得到了凸随机过程和p凸随机过程积分期望的一些估计。作为旁注,我们还指出了论文的主要结果中的一个错误[Hermite-Hadamard型不等式,凸随机过程和Katugampola分数积分,Revista Integración, temas de matemáticas 36 (2018), no. 1]。2, 133 - 149]。我们期望本文所采用的思想将激发这一方向的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Fractional Inequalities of the Hermite–Hadamard Type for Convex Stochastic Processes
Abstract A generalization of the Hermite–Hadamard (HH) inequality for a positive convex stochastic process, by means of a newly proposed fractional integral operator, is hereby established. Results involving the Riemann– Liouville, Hadamard, Erdélyi–Kober, Katugampola, Weyl and Liouville fractional integrals are deduced as particular cases of our main result. In addition, we also apply some known HH results to obtain some estimates for the expectations of integrals of convex and p-convex stochastic processes. As a side note, we also pointed out a mistake in the main result of the paper [Hermite–Hadamard type inequalities, convex stochastic processes and Katugampola fractional integral, Revista Integración, temas de matemáticas 36 (2018), no. 2, 133–149]. We anticipate that the idea employed herein will inspire further research in this direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信