C*-代数中的Jordan映射和伪谱

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Bourhim, J. Mashreghi
{"title":"C*-代数中的Jordan映射和伪谱","authors":"A. Bourhim, J. Mashreghi","doi":"10.7900/jot.2018aug09.2252","DOIUrl":null,"url":null,"abstract":"We show that a surjective map φ between two unital C∗-algebras A and B, with φ(0)=0, satisfies Λε(φ(x1)−φ(x2))=Λε(x1−x2),(x1, x2∈A), where Λε denotes the ε-pseudospectrum, if and only if φ is a Jordan ∗-isomor\\-phism. We also characterize maps φ1 and φ2 from A onto B that satisfy Λε(φ1(x1)φ2(x2))=Λε(x1x2),(x1, x2∈A), or some other binary operations, in terms of Jordan ∗-isomorphisms. The main results imply several other characterizations of Jordan ∗-isomorphisms which are interesting in their own right.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jordan maps and pseudospectrum in C∗-algebras\",\"authors\":\"A. Bourhim, J. Mashreghi\",\"doi\":\"10.7900/jot.2018aug09.2252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a surjective map φ between two unital C∗-algebras A and B, with φ(0)=0, satisfies Λε(φ(x1)−φ(x2))=Λε(x1−x2),(x1, x2∈A), where Λε denotes the ε-pseudospectrum, if and only if φ is a Jordan ∗-isomor\\\\-phism. We also characterize maps φ1 and φ2 from A onto B that satisfy Λε(φ1(x1)φ2(x2))=Λε(x1x2),(x1, x2∈A), or some other binary operations, in terms of Jordan ∗-isomorphisms. The main results imply several other characterizations of Jordan ∗-isomorphisms which are interesting in their own right.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2018aug09.2252\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2018aug09.2252","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了两个单位C*-代数a和B之间的满射映射φ(0)=0,满足∧ε(φ(x1)-φ(x2))=∧ε。我们还刻画了从A到B的映射φ1和φ2,它们满足∧ε(φ1(x1)φ2(x2))=∧ε。主要结果暗示了Jordan*-同构的其他几个特征,这些特征本身就很有趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jordan maps and pseudospectrum in C∗-algebras
We show that a surjective map φ between two unital C∗-algebras A and B, with φ(0)=0, satisfies Λε(φ(x1)−φ(x2))=Λε(x1−x2),(x1, x2∈A), where Λε denotes the ε-pseudospectrum, if and only if φ is a Jordan ∗-isomor\-phism. We also characterize maps φ1 and φ2 from A onto B that satisfy Λε(φ1(x1)φ2(x2))=Λε(x1x2),(x1, x2∈A), or some other binary operations, in terms of Jordan ∗-isomorphisms. The main results imply several other characterizations of Jordan ∗-isomorphisms which are interesting in their own right.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信