模型域上的Kohn–Laplacian和Cauchy–Szegö投影

IF 0.4 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
D. Chang, Ji Li, Jingzhi Tie, Qingyan Wu
{"title":"模型域上的Kohn–Laplacian和Cauchy–Szegö投影","authors":"D. Chang, Ji Li, Jingzhi Tie, Qingyan Wu","doi":"10.4310/amsa.2023.v8.n1.a4","DOIUrl":null,"url":null,"abstract":"We study the Kohn-Laplacian and its fundamental solution on some model domains in $\\mathbb C^{n+1}$, and further discuss the explicit kernel of the Cauchy-Szeg\\\"o projections on these model domains using the real analysis method. We further show that these Cauchy-Szeg\\\"o kernels are Calder\\'on-Zygmund kernels under the suitable quasi-metric.","PeriodicalId":42896,"journal":{"name":"Annals of Mathematical Sciences and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Kohn–Laplacian and Cauchy–Szegö projection on model domains\",\"authors\":\"D. Chang, Ji Li, Jingzhi Tie, Qingyan Wu\",\"doi\":\"10.4310/amsa.2023.v8.n1.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Kohn-Laplacian and its fundamental solution on some model domains in $\\\\mathbb C^{n+1}$, and further discuss the explicit kernel of the Cauchy-Szeg\\\\\\\"o projections on these model domains using the real analysis method. We further show that these Cauchy-Szeg\\\\\\\"o kernels are Calder\\\\'on-Zygmund kernels under the suitable quasi-metric.\",\"PeriodicalId\":42896,\"journal\":{\"name\":\"Annals of Mathematical Sciences and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/amsa.2023.v8.n1.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/amsa.2023.v8.n1.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了$\mathbb C^{n+1}$中某些模型域上的Kohn-Laplacian及其基本解,并用实分析方法进一步讨论了这些模型域上Cauchy-Szeg\ ' o投影的显式核。我们进一步证明了这些Cauchy-Szeg\ o核在合适的准度量下是Calder\ on-Zygmund核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Kohn–Laplacian and Cauchy–Szegö projection on model domains
We study the Kohn-Laplacian and its fundamental solution on some model domains in $\mathbb C^{n+1}$, and further discuss the explicit kernel of the Cauchy-Szeg\"o projections on these model domains using the real analysis method. We further show that these Cauchy-Szeg\"o kernels are Calder\'on-Zygmund kernels under the suitable quasi-metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematical Sciences and Applications
Annals of Mathematical Sciences and Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信