{"title":"模型域上的Kohn–Laplacian和Cauchy–Szegö投影","authors":"D. Chang, Ji Li, Jingzhi Tie, Qingyan Wu","doi":"10.4310/amsa.2023.v8.n1.a4","DOIUrl":null,"url":null,"abstract":"We study the Kohn-Laplacian and its fundamental solution on some model domains in $\\mathbb C^{n+1}$, and further discuss the explicit kernel of the Cauchy-Szeg\\\"o projections on these model domains using the real analysis method. We further show that these Cauchy-Szeg\\\"o kernels are Calder\\'on-Zygmund kernels under the suitable quasi-metric.","PeriodicalId":42896,"journal":{"name":"Annals of Mathematical Sciences and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Kohn–Laplacian and Cauchy–Szegö projection on model domains\",\"authors\":\"D. Chang, Ji Li, Jingzhi Tie, Qingyan Wu\",\"doi\":\"10.4310/amsa.2023.v8.n1.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Kohn-Laplacian and its fundamental solution on some model domains in $\\\\mathbb C^{n+1}$, and further discuss the explicit kernel of the Cauchy-Szeg\\\\\\\"o projections on these model domains using the real analysis method. We further show that these Cauchy-Szeg\\\\\\\"o kernels are Calder\\\\'on-Zygmund kernels under the suitable quasi-metric.\",\"PeriodicalId\":42896,\"journal\":{\"name\":\"Annals of Mathematical Sciences and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/amsa.2023.v8.n1.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/amsa.2023.v8.n1.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The Kohn–Laplacian and Cauchy–Szegö projection on model domains
We study the Kohn-Laplacian and its fundamental solution on some model domains in $\mathbb C^{n+1}$, and further discuss the explicit kernel of the Cauchy-Szeg\"o projections on these model domains using the real analysis method. We further show that these Cauchy-Szeg\"o kernels are Calder\'on-Zygmund kernels under the suitable quasi-metric.