Hardy空间上复合算子的角导数和紧致性

IF 0.7 4区 数学 Q2 MATHEMATICS
Dimitrios Betsakos
{"title":"Hardy空间上复合算子的角导数和紧致性","authors":"Dimitrios Betsakos","doi":"10.7900/JOT.2018APR18.2196","DOIUrl":null,"url":null,"abstract":"Let Do be a simply connected subdomain of the unit disk and A be a compact subset of Do. Let φ be a universal covering map for Do \\ A. We prove that the composition operator Cφ is compact on the Hardy space H if and only if φ does not have an angular derivative at any point of the unit circle. This result extends a theorem of M.M. Jones.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Angular derivatives and compactness of composition operators on Hardy spaces\",\"authors\":\"Dimitrios Betsakos\",\"doi\":\"10.7900/JOT.2018APR18.2196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Do be a simply connected subdomain of the unit disk and A be a compact subset of Do. Let φ be a universal covering map for Do \\\\ A. We prove that the composition operator Cφ is compact on the Hardy space H if and only if φ does not have an angular derivative at any point of the unit circle. This result extends a theorem of M.M. Jones.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/JOT.2018APR18.2196\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/JOT.2018APR18.2196","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设Do是单位圆盘的单连通子域,a是Do的紧致子集。设φ是Do\a的泛覆盖映射。我们证明了复合算子Cφ在Hardy空间H上是紧致的,当且仅当φ在单位圆的任何点上都不具有角导数。这个结果推广了M.M.Jones的一个定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Angular derivatives and compactness of composition operators on Hardy spaces
Let Do be a simply connected subdomain of the unit disk and A be a compact subset of Do. Let φ be a universal covering map for Do \ A. We prove that the composition operator Cφ is compact on the Hardy space H if and only if φ does not have an angular derivative at any point of the unit circle. This result extends a theorem of M.M. Jones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信