{"title":"金属生物材料的增材制造:可持续性方面,机遇和挑战","authors":"Pralhad Pesode, S. Barve","doi":"10.1080/21681015.2023.2229341","DOIUrl":null,"url":null,"abstract":"ABSTRACT The use of cutting-edge techniques is beneficial for the research and development of biomaterials and the production of new sustainable biomaterials. Eco-friendly biomaterials should be promoted. As prospective substitutes for conventional materials, a variety of biomaterials have been conceived and produced to date and successfully used in various biomedical disciplines. The sustainability component in the additive manufacturing of biomaterials is the main goal of this article. There is discussion of various metallic biomaterials, including titanium, stainless steel, magnesium, cobalt-chromium alloy, zinc, tantalum etc. The effects of several additive manufacturing techniques on sustainability are examined. Also, the properties of additive manufactured biomaterials and sustainability aspect of biomaterials are discussed in detail. By reducing material waste and using time and energy efficiently, additive manufacturing can assist to lower costs and having less harmful effects on the environment. This article discussed sustainability aspects of different additive manufacturing techniques used for manufacturing of biomaterials. Graphical abstract","PeriodicalId":16024,"journal":{"name":"Journal of Industrial and Production Engineering","volume":"40 1","pages":"464 - 505"},"PeriodicalIF":4.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Additive manufacturing of metallic biomaterials: sustainability aspect, opportunity, and challenges\",\"authors\":\"Pralhad Pesode, S. Barve\",\"doi\":\"10.1080/21681015.2023.2229341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The use of cutting-edge techniques is beneficial for the research and development of biomaterials and the production of new sustainable biomaterials. Eco-friendly biomaterials should be promoted. As prospective substitutes for conventional materials, a variety of biomaterials have been conceived and produced to date and successfully used in various biomedical disciplines. The sustainability component in the additive manufacturing of biomaterials is the main goal of this article. There is discussion of various metallic biomaterials, including titanium, stainless steel, magnesium, cobalt-chromium alloy, zinc, tantalum etc. The effects of several additive manufacturing techniques on sustainability are examined. Also, the properties of additive manufactured biomaterials and sustainability aspect of biomaterials are discussed in detail. By reducing material waste and using time and energy efficiently, additive manufacturing can assist to lower costs and having less harmful effects on the environment. This article discussed sustainability aspects of different additive manufacturing techniques used for manufacturing of biomaterials. Graphical abstract\",\"PeriodicalId\":16024,\"journal\":{\"name\":\"Journal of Industrial and Production Engineering\",\"volume\":\"40 1\",\"pages\":\"464 - 505\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Production Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21681015.2023.2229341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Production Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681015.2023.2229341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Additive manufacturing of metallic biomaterials: sustainability aspect, opportunity, and challenges
ABSTRACT The use of cutting-edge techniques is beneficial for the research and development of biomaterials and the production of new sustainable biomaterials. Eco-friendly biomaterials should be promoted. As prospective substitutes for conventional materials, a variety of biomaterials have been conceived and produced to date and successfully used in various biomedical disciplines. The sustainability component in the additive manufacturing of biomaterials is the main goal of this article. There is discussion of various metallic biomaterials, including titanium, stainless steel, magnesium, cobalt-chromium alloy, zinc, tantalum etc. The effects of several additive manufacturing techniques on sustainability are examined. Also, the properties of additive manufactured biomaterials and sustainability aspect of biomaterials are discussed in detail. By reducing material waste and using time and energy efficiently, additive manufacturing can assist to lower costs and having less harmful effects on the environment. This article discussed sustainability aspects of different additive manufacturing techniques used for manufacturing of biomaterials. Graphical abstract