{"title":"基于更快R-CNN的单波长和多波长日冕调光和日冕波检测","authors":"Zong-You Xie, Chunyan Ji","doi":"10.1155/2019/7821025","DOIUrl":null,"url":null,"abstract":"Automatic detection of solar events, especially uncommon events such as coronal dimming (CD) and coronal wave (CW), is very important in solar physics research. The CD and CW are not only related to the detection of coronal mass ejections (CMEs) but also affect space weather. In this paper, we have studied methods for automatically detecting them. In addition, we have collected and processed a dataset that includes the solar images and event records, where the solar images come from the Atmospheric Imaging Assembly (AIA) of Solar Dynamics Observatory (SDO) and the event records come from Heliophysics Event Knowledgebase (HEK). Different from the methods used before, we introduce the idea of deep learning. We train single-wavelength and multiwavelength models based on Faster R-CNN. In terms of accuracy, the single-wavelength model performs better. The multiwavelength model has a better detection performance on multiple solar events than the single-wavelength model.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/7821025","citationCount":"3","resultStr":"{\"title\":\"Single and Multiwavelength Detection of Coronal Dimming and Coronal Wave Using Faster R-CNN\",\"authors\":\"Zong-You Xie, Chunyan Ji\",\"doi\":\"10.1155/2019/7821025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic detection of solar events, especially uncommon events such as coronal dimming (CD) and coronal wave (CW), is very important in solar physics research. The CD and CW are not only related to the detection of coronal mass ejections (CMEs) but also affect space weather. In this paper, we have studied methods for automatically detecting them. In addition, we have collected and processed a dataset that includes the solar images and event records, where the solar images come from the Atmospheric Imaging Assembly (AIA) of Solar Dynamics Observatory (SDO) and the event records come from Heliophysics Event Knowledgebase (HEK). Different from the methods used before, we introduce the idea of deep learning. We train single-wavelength and multiwavelength models based on Faster R-CNN. In terms of accuracy, the single-wavelength model performs better. The multiwavelength model has a better detection performance on multiple solar events than the single-wavelength model.\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/7821025\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/7821025\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2019/7821025","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Single and Multiwavelength Detection of Coronal Dimming and Coronal Wave Using Faster R-CNN
Automatic detection of solar events, especially uncommon events such as coronal dimming (CD) and coronal wave (CW), is very important in solar physics research. The CD and CW are not only related to the detection of coronal mass ejections (CMEs) but also affect space weather. In this paper, we have studied methods for automatically detecting them. In addition, we have collected and processed a dataset that includes the solar images and event records, where the solar images come from the Atmospheric Imaging Assembly (AIA) of Solar Dynamics Observatory (SDO) and the event records come from Heliophysics Event Knowledgebase (HEK). Different from the methods used before, we introduce the idea of deep learning. We train single-wavelength and multiwavelength models based on Faster R-CNN. In terms of accuracy, the single-wavelength model performs better. The multiwavelength model has a better detection performance on multiple solar events than the single-wavelength model.
期刊介绍:
Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.