全局支配函数的一种推广

IF 0.6 Q3 MATHEMATICS
Mostafa Momeni, A. Zaeembashi
{"title":"全局支配函数的一种推广","authors":"Mostafa Momeni, A. Zaeembashi","doi":"10.22108/TOC.2019.110404.1562","DOIUrl":null,"url":null,"abstract":"Let G be a graph. A function f : V (G) −→ {0, 1}, satisfying the condition that every vertex u with f(u) = 0 is adjacent with at least one vertex v such that f(v) = 1, is called a dominating function (DF ). The weight of f is defined as wet(f) = Σv∈V (G)f(v). The minimum weight of a dominating function of G is denoted by γ(G), and is called the domination number of G. A dominating function f is called a global dominating function (GDF ) if f is also a DF of G. The minimum weight of a global dominating function is denoted by γg(G) and is called global domination number of G. In this paper we introduce a generalization of global dominating function. Suppose G is a graph and s ≥ 2 and Kn is the complete graph on V (G). A function f : V (G) −→ {0, 1} on G is s-dominating function (s−DF ), if there exists some factorization {G1, . . . , Gs} of Kn, such that G1 = G and f is dominating function of each Gi.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"8 1","pages":"61-68"},"PeriodicalIF":0.6000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalization of global dominating function\",\"authors\":\"Mostafa Momeni, A. Zaeembashi\",\"doi\":\"10.22108/TOC.2019.110404.1562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a graph. A function f : V (G) −→ {0, 1}, satisfying the condition that every vertex u with f(u) = 0 is adjacent with at least one vertex v such that f(v) = 1, is called a dominating function (DF ). The weight of f is defined as wet(f) = Σv∈V (G)f(v). The minimum weight of a dominating function of G is denoted by γ(G), and is called the domination number of G. A dominating function f is called a global dominating function (GDF ) if f is also a DF of G. The minimum weight of a global dominating function is denoted by γg(G) and is called global domination number of G. In this paper we introduce a generalization of global dominating function. Suppose G is a graph and s ≥ 2 and Kn is the complete graph on V (G). A function f : V (G) −→ {0, 1} on G is s-dominating function (s−DF ), if there exists some factorization {G1, . . . , Gs} of Kn, such that G1 = G and f is dominating function of each Gi.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"8 1\",\"pages\":\"61-68\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2019.110404.1562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2019.110404.1562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个图。函数f:V(G)−→ {0,1},满足f(u)=0的每个顶点u与至少一个顶点v相邻,使得f(v)=1的条件,称为支配函数(DF)。f的重量定义为wet(f)=∑v∈v(G)f(v)。G的控制函数的最小权用γ(G)表示,称为G的控制数。如果f也是G的DF,则控制函数f称为全局控制函数(GDF)。设G是一个图,s≥2,Kn是V(G)上的完全图。函数f:V(G)−→ G上的{0,1}是s-支配函数(s−DF),如果存在Kn的一些因子分解{G1,…,Gs},使得G1=G,f是每个Gi的支配函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization of global dominating function
Let G be a graph. A function f : V (G) −→ {0, 1}, satisfying the condition that every vertex u with f(u) = 0 is adjacent with at least one vertex v such that f(v) = 1, is called a dominating function (DF ). The weight of f is defined as wet(f) = Σv∈V (G)f(v). The minimum weight of a dominating function of G is denoted by γ(G), and is called the domination number of G. A dominating function f is called a global dominating function (GDF ) if f is also a DF of G. The minimum weight of a global dominating function is denoted by γg(G) and is called global domination number of G. In this paper we introduce a generalization of global dominating function. Suppose G is a graph and s ≥ 2 and Kn is the complete graph on V (G). A function f : V (G) −→ {0, 1} on G is s-dominating function (s−DF ), if there exists some factorization {G1, . . . , Gs} of Kn, such that G1 = G and f is dominating function of each Gi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信