{"title":"三维Couette流亚临界过渡附近的动力学II:高于阈值的情况","authors":"J. Bedrossian, P. Germain, N. Masmoudi","doi":"10.1090/memo/1377","DOIUrl":null,"url":null,"abstract":"<p>This is the second in a pair of works which study small disturbances to the plane, periodic 3D Couette flow in the incompressible Navier-Stokes equations at high Reynolds number <bold>Re</bold>. In this work, we show that there is constant <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than c 0 much-less-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo>≪<!-- ≪ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0 > c_0 \\ll 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, independent of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper R bold e\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">R</mml:mi>\n <mml:mi mathvariant=\"bold\">e</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbf {Re}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, such that sufficiently regular disturbances of size <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon less-than-or-equivalent-to bold upper R bold e Superscript negative 2 slash 3 minus delta\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\n <mml:mo>≲<!-- ≲ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">R</mml:mi>\n <mml:mi mathvariant=\"bold\">e</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>δ<!-- δ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\epsilon \\lesssim \\mathbf {Re}^{-2/3-\\delta }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for any <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\delta > 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> exist at least until <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t equals c 0 epsilon Superscript negative 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:msup>\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t = c_0\\epsilon ^{-1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and in general evolve to be <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis c 0 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(c_0)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> due to the lift-up effect. Further, after times <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t greater-than-or-equivalent-to bold upper R bold e Superscript 1 slash 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo>≳<!-- ≳ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">R</mml:mi>\n <mml:mi mathvariant=\"bold\">e</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t \\gtrsim \\mathbf {Re}^{1/3}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the streamwise dependence of the solution is rapidly diminished by a mixing-enhanced dissipation effect and the solution is attracted back to the class of “2.5 dimensional” streamwise-independent solutions (sometimes referred to as “streaks”). The largest of these streaks are expected to eventually undergo a secondary instability at <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t almost-equals epsilon Superscript negative 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo>≈<!-- ≈ --></mml:mo>\n <mml:msup>\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t \\approx \\epsilon ^{-1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Hence, our work strongly suggests, for <italic>all</italic> (sufficiently regular) initial data, the genericity of the “lift-up effect <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"right double arrow\">\n <mml:semantics>\n <mml:mo stretchy=\"false\">⇒<!-- ⇒ --></mml:mo>\n <mml:annotation encoding=\"application/x-tex\">\\Rightarrow</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> streak growth <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"right double arrow\">\n <mml:semantics>\n <mml:mo stretchy=\"false\">⇒<!-- ⇒ --></mml:mo>\n <mml:annotation encoding=\"application/x-tex\">\\Rightarrow</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> streak breakdown” scenario for turbulent transition of the 3D Couette flow near the threshold of stability forwarded in the applied mathematics and physics literature.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Dynamics Near the Subcritical Transition of the 3D Couette Flow II: Above Threshold Case\",\"authors\":\"J. Bedrossian, P. Germain, N. Masmoudi\",\"doi\":\"10.1090/memo/1377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This is the second in a pair of works which study small disturbances to the plane, periodic 3D Couette flow in the incompressible Navier-Stokes equations at high Reynolds number <bold>Re</bold>. In this work, we show that there is constant <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than c 0 much-less-than 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>0</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:msub>\\n <mml:mi>c</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:mo>≪<!-- ≪ --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">0 > c_0 \\\\ll 1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, independent of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"bold upper R bold e\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">R</mml:mi>\\n <mml:mi mathvariant=\\\"bold\\\">e</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbf {Re}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, such that sufficiently regular disturbances of size <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon less-than-or-equivalent-to bold upper R bold e Superscript negative 2 slash 3 minus delta\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\\n <mml:mo>≲<!-- ≲ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">R</mml:mi>\\n <mml:mi mathvariant=\\\"bold\\\">e</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\epsilon \\\\lesssim \\\\mathbf {Re}^{-2/3-\\\\delta }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for any <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"delta greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\delta > 0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> exist at least until <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t equals c 0 epsilon Superscript negative 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>t</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:msub>\\n <mml:mi>c</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:msup>\\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">t = c_0\\\\epsilon ^{-1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and in general evolve to be <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis c 0 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>O</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>c</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">O(c_0)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> due to the lift-up effect. Further, after times <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t greater-than-or-equivalent-to bold upper R bold e Superscript 1 slash 3\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>t</mml:mi>\\n <mml:mo>≳<!-- ≳ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">R</mml:mi>\\n <mml:mi mathvariant=\\\"bold\\\">e</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">t \\\\gtrsim \\\\mathbf {Re}^{1/3}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, the streamwise dependence of the solution is rapidly diminished by a mixing-enhanced dissipation effect and the solution is attracted back to the class of “2.5 dimensional” streamwise-independent solutions (sometimes referred to as “streaks”). The largest of these streaks are expected to eventually undergo a secondary instability at <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t almost-equals epsilon Superscript negative 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>t</mml:mi>\\n <mml:mo>≈<!-- ≈ --></mml:mo>\\n <mml:msup>\\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">t \\\\approx \\\\epsilon ^{-1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Hence, our work strongly suggests, for <italic>all</italic> (sufficiently regular) initial data, the genericity of the “lift-up effect <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"right double arrow\\\">\\n <mml:semantics>\\n <mml:mo stretchy=\\\"false\\\">⇒<!-- ⇒ --></mml:mo>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Rightarrow</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> streak growth <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"right double arrow\\\">\\n <mml:semantics>\\n <mml:mo stretchy=\\\"false\\\">⇒<!-- ⇒ --></mml:mo>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Rightarrow</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> streak breakdown” scenario for turbulent transition of the 3D Couette flow near the threshold of stability forwarded in the applied mathematics and physics literature.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Dynamics Near the Subcritical Transition of the 3D Couette Flow II: Above Threshold Case
This is the second in a pair of works which study small disturbances to the plane, periodic 3D Couette flow in the incompressible Navier-Stokes equations at high Reynolds number Re. In this work, we show that there is constant 0>c0≪10 > c_0 \ll 1, independent of Re\mathbf {Re}, such that sufficiently regular disturbances of size ϵ≲Re−2/3−δ\epsilon \lesssim \mathbf {Re}^{-2/3-\delta } for any δ>0\delta > 0 exist at least until t=c0ϵ−1t = c_0\epsilon ^{-1} and in general evolve to be O(c0)O(c_0) due to the lift-up effect. Further, after times t≳Re1/3t \gtrsim \mathbf {Re}^{1/3}, the streamwise dependence of the solution is rapidly diminished by a mixing-enhanced dissipation effect and the solution is attracted back to the class of “2.5 dimensional” streamwise-independent solutions (sometimes referred to as “streaks”). The largest of these streaks are expected to eventually undergo a secondary instability at t≈ϵ−1t \approx \epsilon ^{-1}. Hence, our work strongly suggests, for all (sufficiently regular) initial data, the genericity of the “lift-up effect ⇒\Rightarrow streak growth ⇒\Rightarrow streak breakdown” scenario for turbulent transition of the 3D Couette flow near the threshold of stability forwarded in the applied mathematics and physics literature.