{"title":"三维Couette流亚临界过渡附近的动力学II:高于阈值的情况","authors":"J. Bedrossian, P. Germain, N. Masmoudi","doi":"10.1090/memo/1377","DOIUrl":null,"url":null,"abstract":"<p>This is the second in a pair of works which study small disturbances to the plane, periodic 3D Couette flow in the incompressible Navier-Stokes equations at high Reynolds number <bold>Re</bold>. In this work, we show that there is constant <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than c 0 much-less-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo>≪<!-- ≪ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0 > c_0 \\ll 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, independent of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper R bold e\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">R</mml:mi>\n <mml:mi mathvariant=\"bold\">e</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbf {Re}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, such that sufficiently regular disturbances of size <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon less-than-or-equivalent-to bold upper R bold e Superscript negative 2 slash 3 minus delta\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\n <mml:mo>≲<!-- ≲ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">R</mml:mi>\n <mml:mi mathvariant=\"bold\">e</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>δ<!-- δ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\epsilon \\lesssim \\mathbf {Re}^{-2/3-\\delta }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for any <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\delta > 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> exist at least until <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t equals c 0 epsilon Superscript negative 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:msup>\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t = c_0\\epsilon ^{-1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and in general evolve to be <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis c 0 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(c_0)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> due to the lift-up effect. Further, after times <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t greater-than-or-equivalent-to bold upper R bold e Superscript 1 slash 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo>≳<!-- ≳ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">R</mml:mi>\n <mml:mi mathvariant=\"bold\">e</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t \\gtrsim \\mathbf {Re}^{1/3}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the streamwise dependence of the solution is rapidly diminished by a mixing-enhanced dissipation effect and the solution is attracted back to the class of “2.5 dimensional” streamwise-independent solutions (sometimes referred to as “streaks”). The largest of these streaks are expected to eventually undergo a secondary instability at <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t almost-equals epsilon Superscript negative 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo>≈<!-- ≈ --></mml:mo>\n <mml:msup>\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t \\approx \\epsilon ^{-1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Hence, our work strongly suggests, for <italic>all</italic> (sufficiently regular) initial data, the genericity of the “lift-up effect <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"right double arrow\">\n <mml:semantics>\n <mml:mo stretchy=\"false\">⇒<!-- ⇒ --></mml:mo>\n <mml:annotation encoding=\"application/x-tex\">\\Rightarrow</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> streak growth <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"right double arrow\">\n <mml:semantics>\n <mml:mo stretchy=\"false\">⇒<!-- ⇒ --></mml:mo>\n <mml:annotation encoding=\"application/x-tex\">\\Rightarrow</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> streak breakdown” scenario for turbulent transition of the 3D Couette flow near the threshold of stability forwarded in the applied mathematics and physics literature.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Dynamics Near the Subcritical Transition of the 3D Couette Flow II: Above Threshold Case\",\"authors\":\"J. Bedrossian, P. Germain, N. Masmoudi\",\"doi\":\"10.1090/memo/1377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This is the second in a pair of works which study small disturbances to the plane, periodic 3D Couette flow in the incompressible Navier-Stokes equations at high Reynolds number <bold>Re</bold>. In this work, we show that there is constant <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than c 0 much-less-than 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>0</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:msub>\\n <mml:mi>c</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:mo>≪<!-- ≪ --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">0 > c_0 \\\\ll 1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, independent of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"bold upper R bold e\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">R</mml:mi>\\n <mml:mi mathvariant=\\\"bold\\\">e</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbf {Re}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, such that sufficiently regular disturbances of size <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon less-than-or-equivalent-to bold upper R bold e Superscript negative 2 slash 3 minus delta\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\\n <mml:mo>≲<!-- ≲ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">R</mml:mi>\\n <mml:mi mathvariant=\\\"bold\\\">e</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\epsilon \\\\lesssim \\\\mathbf {Re}^{-2/3-\\\\delta }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for any <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"delta greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\delta > 0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> exist at least until <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t equals c 0 epsilon Superscript negative 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>t</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:msub>\\n <mml:mi>c</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:msup>\\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">t = c_0\\\\epsilon ^{-1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and in general evolve to be <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis c 0 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>O</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>c</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">O(c_0)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> due to the lift-up effect. Further, after times <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t greater-than-or-equivalent-to bold upper R bold e Superscript 1 slash 3\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>t</mml:mi>\\n <mml:mo>≳<!-- ≳ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">R</mml:mi>\\n <mml:mi mathvariant=\\\"bold\\\">e</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">t \\\\gtrsim \\\\mathbf {Re}^{1/3}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, the streamwise dependence of the solution is rapidly diminished by a mixing-enhanced dissipation effect and the solution is attracted back to the class of “2.5 dimensional” streamwise-independent solutions (sometimes referred to as “streaks”). The largest of these streaks are expected to eventually undergo a secondary instability at <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t almost-equals epsilon Superscript negative 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>t</mml:mi>\\n <mml:mo>≈<!-- ≈ --></mml:mo>\\n <mml:msup>\\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">t \\\\approx \\\\epsilon ^{-1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Hence, our work strongly suggests, for <italic>all</italic> (sufficiently regular) initial data, the genericity of the “lift-up effect <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"right double arrow\\\">\\n <mml:semantics>\\n <mml:mo stretchy=\\\"false\\\">⇒<!-- ⇒ --></mml:mo>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Rightarrow</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> streak growth <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"right double arrow\\\">\\n <mml:semantics>\\n <mml:mo stretchy=\\\"false\\\">⇒<!-- ⇒ --></mml:mo>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Rightarrow</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> streak breakdown” scenario for turbulent transition of the 3D Couette flow near the threshold of stability forwarded in the applied mathematics and physics literature.</p>\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1377\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1377","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Dynamics Near the Subcritical Transition of the 3D Couette Flow II: Above Threshold Case
This is the second in a pair of works which study small disturbances to the plane, periodic 3D Couette flow in the incompressible Navier-Stokes equations at high Reynolds number Re. In this work, we show that there is constant 0>c0≪10 > c_0 \ll 1, independent of Re\mathbf {Re}, such that sufficiently regular disturbances of size ϵ≲Re−2/3−δ\epsilon \lesssim \mathbf {Re}^{-2/3-\delta } for any δ>0\delta > 0 exist at least until t=c0ϵ−1t = c_0\epsilon ^{-1} and in general evolve to be O(c0)O(c_0) due to the lift-up effect. Further, after times t≳Re1/3t \gtrsim \mathbf {Re}^{1/3}, the streamwise dependence of the solution is rapidly diminished by a mixing-enhanced dissipation effect and the solution is attracted back to the class of “2.5 dimensional” streamwise-independent solutions (sometimes referred to as “streaks”). The largest of these streaks are expected to eventually undergo a secondary instability at t≈ϵ−1t \approx \epsilon ^{-1}. Hence, our work strongly suggests, for all (sufficiently regular) initial data, the genericity of the “lift-up effect ⇒\Rightarrow streak growth ⇒\Rightarrow streak breakdown” scenario for turbulent transition of the 3D Couette flow near the threshold of stability forwarded in the applied mathematics and physics literature.
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.