负相关随机变量部分和最大值的完全q矩收敛性及其在EV回归模型中的应用*

Pub Date : 2022-09-16 DOI:10.1080/15326349.2022.2112604
Fen Jiang, Miaomiao Wang, Xuejun Wang
{"title":"负相关随机变量部分和最大值的完全q矩收敛性及其在EV回归模型中的应用*","authors":"Fen Jiang, Miaomiao Wang, Xuejun Wang","doi":"10.1080/15326349.2022.2112604","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we prove the complete q-th moment convergence for the maximum of partial sums of -negatively associated random variables under some general conditions. The results obtained in this article are extensions of previous studies for -negatively associated random variables. In addition, we investigate the strong consistency of the least squares estimator in the simple linear errors-in-variables model based on -negatively associated random variables, and provide some simulations to assess the finite sample performance of the theoretical results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete q-th moment convergence for the maximum of partial sums of -negatively associated random variables and its application to the EV regression model*\",\"authors\":\"Fen Jiang, Miaomiao Wang, Xuejun Wang\",\"doi\":\"10.1080/15326349.2022.2112604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we prove the complete q-th moment convergence for the maximum of partial sums of -negatively associated random variables under some general conditions. The results obtained in this article are extensions of previous studies for -negatively associated random variables. In addition, we investigate the strong consistency of the least squares estimator in the simple linear errors-in-variables model based on -negatively associated random variables, and provide some simulations to assess the finite sample performance of the theoretical results.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/15326349.2022.2112604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2022.2112604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文证明了在某些一般条件下,负相关随机变量的部分和的最大值的完全q阶矩收敛性。本文获得的结果是对先前研究负相关随机变量的扩展。此外,我们还研究了基于负相关随机变量的简单线性误差变量模型中最小二乘估计量的强一致性,并提供了一些仿真来评估有限样本理论结果的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Complete q-th moment convergence for the maximum of partial sums of -negatively associated random variables and its application to the EV regression model*
Abstract In this article, we prove the complete q-th moment convergence for the maximum of partial sums of -negatively associated random variables under some general conditions. The results obtained in this article are extensions of previous studies for -negatively associated random variables. In addition, we investigate the strong consistency of the least squares estimator in the simple linear errors-in-variables model based on -negatively associated random variables, and provide some simulations to assess the finite sample performance of the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信