马来化聚丁二烯对环氧树脂粘接强度和韧性的影响

IF 3.4 4区 化学 Q2 POLYMER SCIENCE
Mohammed Panthakkal Abdul Muthalif, Youngson Choe
{"title":"马来化聚丁二烯对环氧树脂粘接强度和韧性的影响","authors":"Mohammed Panthakkal Abdul Muthalif, Youngson Choe","doi":"10.1155/2022/9517467","DOIUrl":null,"url":null,"abstract":"This study explored the effect of maleinized polybutadiene (MPB) on the mechanical properties of epoxy resins. Diglycidyl ether of bisphenol-A, an epoxy resin, was modified by incorporating MPB having different molecular weights in order to improve the fracture toughness and peel strength. MPB was mixed with epoxy resin at several concentrations (5, 10, and 15 phr), with the epoxy resin as the major phase and MPB as the minor phase. A comparative study was performed to investigate the influence of MPB on epoxy resins based on their molecular weight difference. Lap shear test results showed that the shear strength of the MPB-modified epoxy resins was superior to that of the neat epoxy resin. At 10 wt% MPB loading, the modified epoxy resin exhibited an 87% enhancement in T-peel strength relative to that of the neat epoxy resin. Moreover, the fracture energy of the modified epoxy system increased proportionally with the amount of MPB in the epoxy matrix. These results indicate that MPB incorporation is a simple and effective method for designing multifunctional epoxy resins, thus facilitating their industrial application in various spheres.","PeriodicalId":14283,"journal":{"name":"International Journal of Polymer Science","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Maleinized Polybutadiene on Adhesive Strength and Toughness of Epoxy Resins\",\"authors\":\"Mohammed Panthakkal Abdul Muthalif, Youngson Choe\",\"doi\":\"10.1155/2022/9517467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explored the effect of maleinized polybutadiene (MPB) on the mechanical properties of epoxy resins. Diglycidyl ether of bisphenol-A, an epoxy resin, was modified by incorporating MPB having different molecular weights in order to improve the fracture toughness and peel strength. MPB was mixed with epoxy resin at several concentrations (5, 10, and 15 phr), with the epoxy resin as the major phase and MPB as the minor phase. A comparative study was performed to investigate the influence of MPB on epoxy resins based on their molecular weight difference. Lap shear test results showed that the shear strength of the MPB-modified epoxy resins was superior to that of the neat epoxy resin. At 10 wt% MPB loading, the modified epoxy resin exhibited an 87% enhancement in T-peel strength relative to that of the neat epoxy resin. Moreover, the fracture energy of the modified epoxy system increased proportionally with the amount of MPB in the epoxy matrix. These results indicate that MPB incorporation is a simple and effective method for designing multifunctional epoxy resins, thus facilitating their industrial application in various spheres.\",\"PeriodicalId\":14283,\"journal\":{\"name\":\"International Journal of Polymer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymer Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/9517467\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/9517467","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了马来化聚丁二烯(MPB)对环氧树脂力学性能的影响。通过引入不同分子量的MPB对环氧树脂双酚A的二缩水甘油醚进行改性,以提高断裂韧性和剥离强度。将MPB与环氧树脂以几种浓度(5、10和15)混合 phr),其中环氧树脂作为主相并且MPB作为次相。基于分子量差异,对MPB对环氧树脂的影响进行了比较研究。搭接剪切试验结果表明,MPB改性环氧树脂的剪切强度优于纯环氧树脂。在10 相对于纯环氧树脂,改性环氧树脂的T-剥离强度提高了87%。此外,改性环氧树脂体系的断裂能随环氧树脂基体中MPB的含量成比例增加。这些结果表明,MPB掺入是设计多功能环氧树脂的一种简单有效的方法,从而促进了其在各种领域的工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Maleinized Polybutadiene on Adhesive Strength and Toughness of Epoxy Resins
This study explored the effect of maleinized polybutadiene (MPB) on the mechanical properties of epoxy resins. Diglycidyl ether of bisphenol-A, an epoxy resin, was modified by incorporating MPB having different molecular weights in order to improve the fracture toughness and peel strength. MPB was mixed with epoxy resin at several concentrations (5, 10, and 15 phr), with the epoxy resin as the major phase and MPB as the minor phase. A comparative study was performed to investigate the influence of MPB on epoxy resins based on their molecular weight difference. Lap shear test results showed that the shear strength of the MPB-modified epoxy resins was superior to that of the neat epoxy resin. At 10 wt% MPB loading, the modified epoxy resin exhibited an 87% enhancement in T-peel strength relative to that of the neat epoxy resin. Moreover, the fracture energy of the modified epoxy system increased proportionally with the amount of MPB in the epoxy matrix. These results indicate that MPB incorporation is a simple and effective method for designing multifunctional epoxy resins, thus facilitating their industrial application in various spheres.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: The International Journal of Polymer Science is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles on the chemistry and physics of macromolecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信