{"title":"有限时滞随机脉冲泛函积分微分方程的存在性及Hyers-Ulam稳定性","authors":"A. Anguraj, K. Ramkumar, K. Ravikumar","doi":"10.22034/CMDE.2020.32591.1512","DOIUrl":null,"url":null,"abstract":"In this article, we concentrate on the existence and Hyers-Ulam stability of random impulsive stochastic functional integrodifferential equations with finite delays. Initially, the existence of the mild solutions to the equations by utilizing Banach fixed point theorem is demonstrated. In the later case we explore the Hyers Ulam stability results under the Lipschitz condition on a bounded and closed interval.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence and Hyers-Ulam stability of random impulsive stochastic functional integrodifferential equations with finite delays\",\"authors\":\"A. Anguraj, K. Ramkumar, K. Ravikumar\",\"doi\":\"10.22034/CMDE.2020.32591.1512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we concentrate on the existence and Hyers-Ulam stability of random impulsive stochastic functional integrodifferential equations with finite delays. Initially, the existence of the mild solutions to the equations by utilizing Banach fixed point theorem is demonstrated. In the later case we explore the Hyers Ulam stability results under the Lipschitz condition on a bounded and closed interval.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.32591.1512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.32591.1512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Existence and Hyers-Ulam stability of random impulsive stochastic functional integrodifferential equations with finite delays
In this article, we concentrate on the existence and Hyers-Ulam stability of random impulsive stochastic functional integrodifferential equations with finite delays. Initially, the existence of the mild solutions to the equations by utilizing Banach fixed point theorem is demonstrated. In the later case we explore the Hyers Ulam stability results under the Lipschitz condition on a bounded and closed interval.