{"title":"基于模糊逻辑的飞机航迹角系统有限时间精确跟踪指令滤波器AILC","authors":"Chunli Zhang, Xu Tian, Yangjie Gao, F. Qian","doi":"10.1155/2023/4744873","DOIUrl":null,"url":null,"abstract":"In this paper, the longitudinal model of an uncertain aircraft is taken as the research object, and the aircraft path inclination is controlled by controlling the input rudder deflection angle. An adaptive iterative learning control (AILC) scheme is proposed to solve the accurate tracking control problem of the flight path inclination on a finite time interval. The aircraft track angle system is abstractly modeled to obtain a triangular model in the form of strict feedback. For the abstracted strict feedback model, the fuzzy logic is used to approximate the uncertain part of the model. A command filter and an error compensation mechanism are introduced to prevent the computational bloat problem caused by excessive system order, and a convergent series sequence is used to deal with the truncation error caused by the approximation of the fuzzy logic. Based on the Lyapunov stability theorem, all signals of the closed-loop system are bounded on the finite time interval \n \n \n \n 0\n ,\n T\n \n \n \n , and the output of the system can track the desired trajectory accurately. Finally, the feasibility and effectiveness of the method are verified by MATLAB simulation results.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Command Filter AILC for Finite Time Accurate Tracking of Aircraft Track Angle System Based on Fuzzy Logic\",\"authors\":\"Chunli Zhang, Xu Tian, Yangjie Gao, F. Qian\",\"doi\":\"10.1155/2023/4744873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the longitudinal model of an uncertain aircraft is taken as the research object, and the aircraft path inclination is controlled by controlling the input rudder deflection angle. An adaptive iterative learning control (AILC) scheme is proposed to solve the accurate tracking control problem of the flight path inclination on a finite time interval. The aircraft track angle system is abstractly modeled to obtain a triangular model in the form of strict feedback. For the abstracted strict feedback model, the fuzzy logic is used to approximate the uncertain part of the model. A command filter and an error compensation mechanism are introduced to prevent the computational bloat problem caused by excessive system order, and a convergent series sequence is used to deal with the truncation error caused by the approximation of the fuzzy logic. Based on the Lyapunov stability theorem, all signals of the closed-loop system are bounded on the finite time interval \\n \\n \\n \\n 0\\n ,\\n T\\n \\n \\n \\n , and the output of the system can track the desired trajectory accurately. Finally, the feasibility and effectiveness of the method are verified by MATLAB simulation results.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4744873\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/4744873","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Command Filter AILC for Finite Time Accurate Tracking of Aircraft Track Angle System Based on Fuzzy Logic
In this paper, the longitudinal model of an uncertain aircraft is taken as the research object, and the aircraft path inclination is controlled by controlling the input rudder deflection angle. An adaptive iterative learning control (AILC) scheme is proposed to solve the accurate tracking control problem of the flight path inclination on a finite time interval. The aircraft track angle system is abstractly modeled to obtain a triangular model in the form of strict feedback. For the abstracted strict feedback model, the fuzzy logic is used to approximate the uncertain part of the model. A command filter and an error compensation mechanism are introduced to prevent the computational bloat problem caused by excessive system order, and a convergent series sequence is used to deal with the truncation error caused by the approximation of the fuzzy logic. Based on the Lyapunov stability theorem, all signals of the closed-loop system are bounded on the finite time interval
0
,
T
, and the output of the system can track the desired trajectory accurately. Finally, the feasibility and effectiveness of the method are verified by MATLAB simulation results.
期刊介绍:
Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike.
As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.