基于状态相关风险规避的马尔可夫决策过程的启发式均值方差优化

IF 1.9 3区 工程技术 Q3 MANAGEMENT
Rainer Schlosser
{"title":"基于状态相关风险规避的马尔可夫决策过程的启发式均值方差优化","authors":"Rainer Schlosser","doi":"10.1093/imaman/dpab009","DOIUrl":null,"url":null,"abstract":"In dynamic decision problems, it is challenging to find the right balance between maximizing expected rewards and minimizing risks. In this paper, we consider NP-hard mean-variance (MV) optimization problems in Markov decision processes with a finite time horizon. We present a heuristic approach to solve MV problems, which is based on state-dependent risk aversion and efficient dynamic programming techniques. Our approach can also be applied to mean-semivariance (MSV) problems, which particularly focus on the downside risk. We demonstrate the applicability and the effectiveness of our heuristic for dynamic pricing applications. Using reproducible examples, we show that our approach outperforms existing state-of-the-art benchmark models for MV and MSV problems while also providing competitive runtimes. Further, compared to models based on constant risk levels, we find that state-dependent risk aversion allows to more effectively intervene in case sales processes deviate from their planned paths. Our concepts are domain independent, easy to implement and of low computational complexity.","PeriodicalId":56296,"journal":{"name":"IMA Journal of Management Mathematics","volume":"33 2","pages":"181-199"},"PeriodicalIF":1.9000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heuristic mean-variance optimization in Markov decision processes using state-dependent risk aversion\",\"authors\":\"Rainer Schlosser\",\"doi\":\"10.1093/imaman/dpab009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In dynamic decision problems, it is challenging to find the right balance between maximizing expected rewards and minimizing risks. In this paper, we consider NP-hard mean-variance (MV) optimization problems in Markov decision processes with a finite time horizon. We present a heuristic approach to solve MV problems, which is based on state-dependent risk aversion and efficient dynamic programming techniques. Our approach can also be applied to mean-semivariance (MSV) problems, which particularly focus on the downside risk. We demonstrate the applicability and the effectiveness of our heuristic for dynamic pricing applications. Using reproducible examples, we show that our approach outperforms existing state-of-the-art benchmark models for MV and MSV problems while also providing competitive runtimes. Further, compared to models based on constant risk levels, we find that state-dependent risk aversion allows to more effectively intervene in case sales processes deviate from their planned paths. Our concepts are domain independent, easy to implement and of low computational complexity.\",\"PeriodicalId\":56296,\"journal\":{\"name\":\"IMA Journal of Management Mathematics\",\"volume\":\"33 2\",\"pages\":\"181-199\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Management Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9717044/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Management Mathematics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9717044/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 2

摘要

在动态决策问题中,如何在期望回报最大化和风险最小化之间找到适当的平衡是一个挑战。本文研究有限时间范围马尔可夫决策过程中的NP-hard均值方差优化问题。我们提出了一种基于状态相关风险规避和高效动态规划技术的求解MV问题的启发式方法。我们的方法也可以应用于均值半方差(MSV)问题,它特别关注下行风险。我们演示了启发式算法在动态定价应用中的适用性和有效性。使用可重复的例子,我们表明我们的方法优于现有的MV和MSV问题的最先进的基准模型,同时也提供了有竞争力的运行时。此外,与基于恒定风险水平的模型相比,我们发现状态依赖的风险厌恶允许在销售过程偏离计划路径时更有效地进行干预。我们的概念是领域独立的,易于实现和低计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heuristic mean-variance optimization in Markov decision processes using state-dependent risk aversion
In dynamic decision problems, it is challenging to find the right balance between maximizing expected rewards and minimizing risks. In this paper, we consider NP-hard mean-variance (MV) optimization problems in Markov decision processes with a finite time horizon. We present a heuristic approach to solve MV problems, which is based on state-dependent risk aversion and efficient dynamic programming techniques. Our approach can also be applied to mean-semivariance (MSV) problems, which particularly focus on the downside risk. We demonstrate the applicability and the effectiveness of our heuristic for dynamic pricing applications. Using reproducible examples, we show that our approach outperforms existing state-of-the-art benchmark models for MV and MSV problems while also providing competitive runtimes. Further, compared to models based on constant risk levels, we find that state-dependent risk aversion allows to more effectively intervene in case sales processes deviate from their planned paths. Our concepts are domain independent, easy to implement and of low computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Management Mathematics
IMA Journal of Management Mathematics OPERATIONS RESEARCH & MANAGEMENT SCIENCE-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
17.60%
发文量
15
审稿时长
>12 weeks
期刊介绍: The mission of this quarterly journal is to publish mathematical research of the highest quality, impact and relevance that can be directly utilised or have demonstrable potential to be employed by managers in profit, not-for-profit, third party and governmental/public organisations to improve their practices. Thus the research must be quantitative and of the highest quality if it is to be published in the journal. Furthermore, the outcome of the research must be ultimately useful for managers. The journal also publishes novel meta-analyses of the literature, reviews of the "state-of-the art" in a manner that provides new insight, and genuine applications of mathematics to real-world problems in the form of case studies. The journal welcomes papers dealing with topics in Operational Research and Management Science, Operations Management, Decision Sciences, Transportation Science, Marketing Science, Analytics, and Financial and Risk Modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信