{"title":"探索应用智能算法增强AR-HUD视觉交互设计","authors":"Jian Teng, Fucheng Wan, Yiquan Kong","doi":"10.4018/ijitsa.326558","DOIUrl":null,"url":null,"abstract":"This study aims to optimize the visual interaction design of AR-HUD and reduce cognitive load in complex driving situations. An immersive driving simulation incorporating eye-tracking technology was utilized to analyze objective physiological indices and measure subjective cognitive load using the NASA-TLX. Additionally, a visual cognitive load index was integrated into a BP-GA neural network model for load prediction, enabling the derivation of an optimal solution for AR-HUD design. The optimized AR-HUD interface demonstrated a significant reduction in cognitive load compared to the previous prototype. The experimental group achieved a mean total score of 25.63 on the WP scale, whereas the control group scored 43.53, indicating a remarkable improvement of 41.4%. This study presents an innovative approach to optimizing AR-HUD design, effectively reducing cognitive load in complex driving situations. The findings demonstrate the potential of the proposed algorithm to enhance user experience and performance.","PeriodicalId":52019,"journal":{"name":"International Journal of Information Technologies and Systems Approach","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Enhancement of AR-HUD Visual Interaction Design Through Application of Intelligent Algorithms\",\"authors\":\"Jian Teng, Fucheng Wan, Yiquan Kong\",\"doi\":\"10.4018/ijitsa.326558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to optimize the visual interaction design of AR-HUD and reduce cognitive load in complex driving situations. An immersive driving simulation incorporating eye-tracking technology was utilized to analyze objective physiological indices and measure subjective cognitive load using the NASA-TLX. Additionally, a visual cognitive load index was integrated into a BP-GA neural network model for load prediction, enabling the derivation of an optimal solution for AR-HUD design. The optimized AR-HUD interface demonstrated a significant reduction in cognitive load compared to the previous prototype. The experimental group achieved a mean total score of 25.63 on the WP scale, whereas the control group scored 43.53, indicating a remarkable improvement of 41.4%. This study presents an innovative approach to optimizing AR-HUD design, effectively reducing cognitive load in complex driving situations. The findings demonstrate the potential of the proposed algorithm to enhance user experience and performance.\",\"PeriodicalId\":52019,\"journal\":{\"name\":\"International Journal of Information Technologies and Systems Approach\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technologies and Systems Approach\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitsa.326558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technologies and Systems Approach","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitsa.326558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Exploring Enhancement of AR-HUD Visual Interaction Design Through Application of Intelligent Algorithms
This study aims to optimize the visual interaction design of AR-HUD and reduce cognitive load in complex driving situations. An immersive driving simulation incorporating eye-tracking technology was utilized to analyze objective physiological indices and measure subjective cognitive load using the NASA-TLX. Additionally, a visual cognitive load index was integrated into a BP-GA neural network model for load prediction, enabling the derivation of an optimal solution for AR-HUD design. The optimized AR-HUD interface demonstrated a significant reduction in cognitive load compared to the previous prototype. The experimental group achieved a mean total score of 25.63 on the WP scale, whereas the control group scored 43.53, indicating a remarkable improvement of 41.4%. This study presents an innovative approach to optimizing AR-HUD design, effectively reducing cognitive load in complex driving situations. The findings demonstrate the potential of the proposed algorithm to enhance user experience and performance.