{"title":"叶根磷脂作为生物活性植物化学物质的出现-从药用植物和食品中提取的具有免疫调节活性的天然化合物","authors":"A. Vollmar, Simone Moser","doi":"10.1515/pteridines-2022-0047","DOIUrl":null,"url":null,"abstract":"Abstract The degradation of the green plant pigment chlorophyll has fascinated chemists and biologists alike over the last few decades. Bioactivities of the compounds formed in this biochemical degradation pathway, however, have only come to light recently. These natural compounds that are formed from chlorophyll during plant senescence are now called phyllobilins. In this review, we shortly discuss chlorophyll degradation and outline the so-far known bioactivities of selected phyllobilins (phylloleucobilin, dioxobilin-type phylloleucobilin, and phylloxanthobilin), and we also highlight the recently discovered immunomodulatory effects of a yellow phylloxanthobilin.","PeriodicalId":20792,"journal":{"name":"Pteridines","volume":"34 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The advent of phyllobilins as bioactive phytochemicals – natural compounds derived from chlorophyll in medicinal plants and food with immunomodulatory activities\",\"authors\":\"A. Vollmar, Simone Moser\",\"doi\":\"10.1515/pteridines-2022-0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The degradation of the green plant pigment chlorophyll has fascinated chemists and biologists alike over the last few decades. Bioactivities of the compounds formed in this biochemical degradation pathway, however, have only come to light recently. These natural compounds that are formed from chlorophyll during plant senescence are now called phyllobilins. In this review, we shortly discuss chlorophyll degradation and outline the so-far known bioactivities of selected phyllobilins (phylloleucobilin, dioxobilin-type phylloleucobilin, and phylloxanthobilin), and we also highlight the recently discovered immunomodulatory effects of a yellow phylloxanthobilin.\",\"PeriodicalId\":20792,\"journal\":{\"name\":\"Pteridines\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pteridines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/pteridines-2022-0047\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pteridines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/pteridines-2022-0047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The advent of phyllobilins as bioactive phytochemicals – natural compounds derived from chlorophyll in medicinal plants and food with immunomodulatory activities
Abstract The degradation of the green plant pigment chlorophyll has fascinated chemists and biologists alike over the last few decades. Bioactivities of the compounds formed in this biochemical degradation pathway, however, have only come to light recently. These natural compounds that are formed from chlorophyll during plant senescence are now called phyllobilins. In this review, we shortly discuss chlorophyll degradation and outline the so-far known bioactivities of selected phyllobilins (phylloleucobilin, dioxobilin-type phylloleucobilin, and phylloxanthobilin), and we also highlight the recently discovered immunomodulatory effects of a yellow phylloxanthobilin.
期刊介绍:
Pteridines is an open acess international quarterly journal dealing with all aspects of pteridine research. Pteridines are heterocyclic fused ring compounds involved in a wide range of biological functions from the color on butterfly wings to cofactors in enzyme catalysis to essential vitamins. Of the pteridines, 5,6,7,8-tetrahydrobiopterin is the necessary cofactor of several aromatic amino acid monoxygenases, the nitric oxide synthases and glyceryl ether monoxygenase (GEMO). Neopterin plays an essential role in the immune system and is an important biomarker in laboratory medicine for diseases such as HIV, cardiovascular disease, malignant tumors, among others.
Topics:
-Neopterin, dihydroneopterin, monapterin-
Biopterin, tetrahydrobiopterin-
Folates, antifolates, riboflavin-
Phenylalanine, tyrosine, phenylketonuria, serotonin, adrenalin, noradrenalin, L-DOPA, dopamine, related biogenic amines-
Phenylalanine hydroxylase, tyrosine hydroxylase, tryptophan hydroxylase, nitric oxide synthases (iNOS), alkylglycerol monooxygenase (AGMO), dihydropterin reductase, sepiapterin reductase-
Homocysteine, mediators of inflammation, redox systems, iron.