基于量子计算分析的3-羟基-4-硝基苯甲醛振动动力学、Hirshfeld表面和分子对接研究

IF 1.3 4区 材料科学 Q3 CRYSTALLOGRAPHY
K. Nagarajan, N. Surumbarkuzhali, K. Parimala
{"title":"基于量子计算分析的3-羟基-4-硝基苯甲醛振动动力学、Hirshfeld表面和分子对接研究","authors":"K. Nagarajan, N. Surumbarkuzhali, K. Parimala","doi":"10.1080/01411594.2023.2249197","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the present work, we report the experimental and computational investigations of 3-Hydroxy-4-nitrobenzaldehyde (3H4NB) were examined. Comparing observed and simulated vibrational spectra allowed for the identification of characteristic frequencies and the attribution of band names. For the density functional theory (DFT) calculations, the LSDA functional with 6-311 + G(d,p) degree of approximation was used. Furthermore, the same level of theory was used to calculate molecular orbitals such as natural bond orbitals (NBOs) and the HOMO–LUMO energy gap. The condensed Fukui function and the molecular electrostatic potential (MEP) surface were used to determine the relative electrophilicity and nucleophilicity of the current molecule. Intermolecular hydrogen bonding interactions are studied using Hirshfeld surface analysis and fingerprint plots. Molecular docking analysis was used to investigate the compound's biological activities. The hydrogen bond active binding residues and binding energy of a chosen chemical with carcinogenic activity targets were examined.","PeriodicalId":19881,"journal":{"name":"Phase Transitions","volume":"96 1","pages":"687 - 709"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibrational dynamics, Hirshfeld surface and molecular docking studies by quantum computational analysis of 3-Hydroxy-4-nitrobenzaldehyde\",\"authors\":\"K. Nagarajan, N. Surumbarkuzhali, K. Parimala\",\"doi\":\"10.1080/01411594.2023.2249197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the present work, we report the experimental and computational investigations of 3-Hydroxy-4-nitrobenzaldehyde (3H4NB) were examined. Comparing observed and simulated vibrational spectra allowed for the identification of characteristic frequencies and the attribution of band names. For the density functional theory (DFT) calculations, the LSDA functional with 6-311 + G(d,p) degree of approximation was used. Furthermore, the same level of theory was used to calculate molecular orbitals such as natural bond orbitals (NBOs) and the HOMO–LUMO energy gap. The condensed Fukui function and the molecular electrostatic potential (MEP) surface were used to determine the relative electrophilicity and nucleophilicity of the current molecule. Intermolecular hydrogen bonding interactions are studied using Hirshfeld surface analysis and fingerprint plots. Molecular docking analysis was used to investigate the compound's biological activities. The hydrogen bond active binding residues and binding energy of a chosen chemical with carcinogenic activity targets were examined.\",\"PeriodicalId\":19881,\"journal\":{\"name\":\"Phase Transitions\",\"volume\":\"96 1\",\"pages\":\"687 - 709\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phase Transitions\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/01411594.2023.2249197\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phase Transitions","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/01411594.2023.2249197","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文报道了3-羟基-4-硝基苯甲醛(3H4NB)的实验研究和计算研究。比较观测到的和模拟的振动谱可以识别特征频率和波段名称的归属。密度泛函理论(DFT)计算采用6-311 + G(d,p)近似度的LSDA泛函。此外,同样的理论水平被用于计算分子轨道,如自然键轨道(NBOs)和HOMO-LUMO能隙。利用浓缩福井函数和分子静电势(MEP)表面来测定电流分子的相对亲电性和亲核性。利用Hirshfeld表面分析和指纹图谱研究了分子间氢键相互作用。采用分子对接分析对化合物的生物活性进行了研究。研究了选定的具有致癌活性靶点的化学物质的氢键活性结合残基和结合能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vibrational dynamics, Hirshfeld surface and molecular docking studies by quantum computational analysis of 3-Hydroxy-4-nitrobenzaldehyde
ABSTRACT In the present work, we report the experimental and computational investigations of 3-Hydroxy-4-nitrobenzaldehyde (3H4NB) were examined. Comparing observed and simulated vibrational spectra allowed for the identification of characteristic frequencies and the attribution of band names. For the density functional theory (DFT) calculations, the LSDA functional with 6-311 + G(d,p) degree of approximation was used. Furthermore, the same level of theory was used to calculate molecular orbitals such as natural bond orbitals (NBOs) and the HOMO–LUMO energy gap. The condensed Fukui function and the molecular electrostatic potential (MEP) surface were used to determine the relative electrophilicity and nucleophilicity of the current molecule. Intermolecular hydrogen bonding interactions are studied using Hirshfeld surface analysis and fingerprint plots. Molecular docking analysis was used to investigate the compound's biological activities. The hydrogen bond active binding residues and binding energy of a chosen chemical with carcinogenic activity targets were examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phase Transitions
Phase Transitions 物理-晶体学
CiteScore
3.00
自引率
6.20%
发文量
61
审稿时长
1.4 months
期刊介绍: Phase Transitions is the only journal devoted exclusively to this important subject. It provides a focus for papers on most aspects of phase transitions in condensed matter. Although emphasis is placed primarily on experimental work, theoretical papers are welcome if they have some bearing on experimental results. The areas of interest include: -structural phase transitions (ferroelectric, ferroelastic, multiferroic, order-disorder, Jahn-Teller, etc.) under a range of external parameters (temperature, pressure, strain, electric/magnetic fields, etc.) -geophysical phase transitions -metal-insulator phase transitions -superconducting and superfluid transitions -magnetic phase transitions -critical phenomena and physical properties at phase transitions -liquid crystals -technological applications of phase transitions -quantum phase transitions Phase Transitions publishes both research papers and invited articles devoted to special topics. Major review papers are particularly welcome. A further emphasis of the journal is the publication of a selected number of small workshops, which are at the forefront of their field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信