{"title":"预测颗粒土动力特性的通用模型形式","authors":"M. Bayat","doi":"10.13168/agg.2020.0016","DOIUrl":null,"url":null,"abstract":"Dynamic soil properties are important parameters for the design of structures subjected to various dynamic/cyclic loading such as earthquake which can be obtained by in situ and laboratory measurements. Numerous empirical and mathematical models have been proposed to predict the dynamic properties of soils, including maximum shear modulus (Gmax), normalized shear modulus (G/Gmax γ) curve, reference shear strain (γr), minimum damping ratio (Dmin) and damping ratio (D γ) curve. However, the majority of the existing models were proposed for specific soil types, loading characteristics, initial soil fabrics and strain ranges. This paper proposes five universal models to estimate the Gmax, γr and Dmin values, and also G/Gmax – γ and D – γ curves using a database that contains 117 tests on 5 different granular soils. The proposed models include the effect of grading characteristics, void ratio, mean effective confining pressure, consolidation stress ratio (KC) and specimen preparation method. The models are validated using experimental data from previous studies for granular soils. The results indicate that the proposed models are capable of evaluating the dynamic properties of granular soil. ARTICLE INFO","PeriodicalId":50899,"journal":{"name":"Acta Geodynamica et Geomaterialia","volume":"1 1","pages":"217-227"},"PeriodicalIF":0.9000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Universal model forms for predicting the dynamic properties of granular soils\",\"authors\":\"M. Bayat\",\"doi\":\"10.13168/agg.2020.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic soil properties are important parameters for the design of structures subjected to various dynamic/cyclic loading such as earthquake which can be obtained by in situ and laboratory measurements. Numerous empirical and mathematical models have been proposed to predict the dynamic properties of soils, including maximum shear modulus (Gmax), normalized shear modulus (G/Gmax γ) curve, reference shear strain (γr), minimum damping ratio (Dmin) and damping ratio (D γ) curve. However, the majority of the existing models were proposed for specific soil types, loading characteristics, initial soil fabrics and strain ranges. This paper proposes five universal models to estimate the Gmax, γr and Dmin values, and also G/Gmax – γ and D – γ curves using a database that contains 117 tests on 5 different granular soils. The proposed models include the effect of grading characteristics, void ratio, mean effective confining pressure, consolidation stress ratio (KC) and specimen preparation method. The models are validated using experimental data from previous studies for granular soils. The results indicate that the proposed models are capable of evaluating the dynamic properties of granular soil. ARTICLE INFO\",\"PeriodicalId\":50899,\"journal\":{\"name\":\"Acta Geodynamica et Geomaterialia\",\"volume\":\"1 1\",\"pages\":\"217-227\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geodynamica et Geomaterialia\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.13168/agg.2020.0016\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodynamica et Geomaterialia","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.13168/agg.2020.0016","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Universal model forms for predicting the dynamic properties of granular soils
Dynamic soil properties are important parameters for the design of structures subjected to various dynamic/cyclic loading such as earthquake which can be obtained by in situ and laboratory measurements. Numerous empirical and mathematical models have been proposed to predict the dynamic properties of soils, including maximum shear modulus (Gmax), normalized shear modulus (G/Gmax γ) curve, reference shear strain (γr), minimum damping ratio (Dmin) and damping ratio (D γ) curve. However, the majority of the existing models were proposed for specific soil types, loading characteristics, initial soil fabrics and strain ranges. This paper proposes five universal models to estimate the Gmax, γr and Dmin values, and also G/Gmax – γ and D – γ curves using a database that contains 117 tests on 5 different granular soils. The proposed models include the effect of grading characteristics, void ratio, mean effective confining pressure, consolidation stress ratio (KC) and specimen preparation method. The models are validated using experimental data from previous studies for granular soils. The results indicate that the proposed models are capable of evaluating the dynamic properties of granular soil. ARTICLE INFO
期刊介绍:
Acta geodynamica et geomaterialia (AGG) has been published by the Institute of Rock Structures and Mechanics, Czech Academy of Sciences since 2004, formerly known as Acta Montana published from the beginning of sixties till 2003. Approximately 40 articles per year in four issues are published, covering observations related to central Europe and new theoretical developments and interpretations in these disciplines. It is possible to publish occasionally research articles from other regions of the world, only if they present substantial advance in methodological or theoretical development with worldwide impact. The Board of Editors is international in representation.