雷暴位置数据同化对数值天气预报的影响

IF 1.9 4区 地球科学 Q2 ENGINEERING, OCEAN
K. G. Rubinshtein, I. Gubenko
{"title":"雷暴位置数据同化对数值天气预报的影响","authors":"K. G. Rubinshtein, I. Gubenko","doi":"10.1175/jtech-d-21-0125.1","DOIUrl":null,"url":null,"abstract":"\nThe article compares four lightning detection networks, provides a brief overview of lightning observation data assimilation in numerical weather forecasts, and describes and illustrates the used procedure of lightning location and time assimilation in numerical weather forecasting. Evaluations of absolute errors in temperatures of air at 2 m, humidity at 2 m, air pressure near the surface, wind speed at 10 m, and precipitation are provided for 10 forecasts made in 2020 for days on which intensive thunderstorms were observed in the Krasnodar region of Russia. It has been found that average errors for the forecast area for 24, 48, and 72 h of the forecast decreased for all parameters when assimilation of observed lightning data is used for forecasting. It has been shown that the predicted precipitation field configuration and intensity became closer to references for both areas where thunderstorms were observed and the areas where no thunderstorms occurred.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Thunderstorm Location Data Assimilation on Numerical Weather Forecasting\",\"authors\":\"K. G. Rubinshtein, I. Gubenko\",\"doi\":\"10.1175/jtech-d-21-0125.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe article compares four lightning detection networks, provides a brief overview of lightning observation data assimilation in numerical weather forecasts, and describes and illustrates the used procedure of lightning location and time assimilation in numerical weather forecasting. Evaluations of absolute errors in temperatures of air at 2 m, humidity at 2 m, air pressure near the surface, wind speed at 10 m, and precipitation are provided for 10 forecasts made in 2020 for days on which intensive thunderstorms were observed in the Krasnodar region of Russia. It has been found that average errors for the forecast area for 24, 48, and 72 h of the forecast decreased for all parameters when assimilation of observed lightning data is used for forecasting. It has been shown that the predicted precipitation field configuration and intensity became closer to references for both areas where thunderstorms were observed and the areas where no thunderstorms occurred.\",\"PeriodicalId\":15074,\"journal\":{\"name\":\"Journal of Atmospheric and Oceanic Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Oceanic Technology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jtech-d-21-0125.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-21-0125.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

摘要

本文对四种闪电探测网进行了比较,简要介绍了数值天气预报中闪电观测资料同化的概况,并对数值天气预报中闪电位置和时间同化的使用程序进行了描述和说明。本文对2020年俄罗斯克拉斯诺达尔地区观测到强雷暴的10天进行了10次预报,给出了2米空气温度、2米湿度、近地面气压、10米风速和降水的绝对误差评估。结果表明,同化闪电观测资料预报后,各参数预报区域24、48、72 h的平均误差均减小。结果表明,在有雷暴和无雷暴的地区,预测的降水场形态和强度都更接近参考资料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Thunderstorm Location Data Assimilation on Numerical Weather Forecasting
The article compares four lightning detection networks, provides a brief overview of lightning observation data assimilation in numerical weather forecasts, and describes and illustrates the used procedure of lightning location and time assimilation in numerical weather forecasting. Evaluations of absolute errors in temperatures of air at 2 m, humidity at 2 m, air pressure near the surface, wind speed at 10 m, and precipitation are provided for 10 forecasts made in 2020 for days on which intensive thunderstorms were observed in the Krasnodar region of Russia. It has been found that average errors for the forecast area for 24, 48, and 72 h of the forecast decreased for all parameters when assimilation of observed lightning data is used for forecasting. It has been shown that the predicted precipitation field configuration and intensity became closer to references for both areas where thunderstorms were observed and the areas where no thunderstorms occurred.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
9.10%
发文量
135
审稿时长
3 months
期刊介绍: The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信