Barış Gün Sürmeli, Imke Weishaupt, Knut Schwarzer, N. Moriz, J. Schneider
{"title":"利用近红外光谱对应用的巴氏灭菌装置进行估计,以控制闪蒸巴氏灭菌中的热冲击","authors":"Barış Gün Sürmeli, Imke Weishaupt, Knut Schwarzer, N. Moriz, J. Schneider","doi":"10.1177/09670335211057233","DOIUrl":null,"url":null,"abstract":"Pasteurization is a crucial processing method in the food industry to ensure the safety of consumables. A major part of contemporary pasteurization processes involves using flash pasteurizer systems, where liquids are pumped through a pipe system to heat them for a predefined time. Accurately monitoring the amount of heat treatment applied to a product is challenging. This monitoring helps ensure that the correct heat impact (expressed in pasteurization units) is applied, which is commonly calculated as a product of time and temperature, taking achievability of the inactivation of the microorganisms into account. The state-of-the-art method involves a calculation of the applied pasteurization units using a one-point temperature measurement and the holding time for this temperature. Concerns about accuracy lead to high safety margins, reducing the quality of the pasteurized product. In this study, the applied pasteurization level was estimated using regression models trained with NIR spectroscopy data collected while pasteurizing fruit juices of different types and brands. Several conventional regression models were trained in combination with different preprocessing methods, including a novel prediction outlier detection method. Generalized juice models trained with the concatenated data of all types of juices demonstrated cross-validated scores of RMSECV ∼2.78 ± 0.09 and r2 0.96 ± 0.01, while separate juice models displayed averaged cross-validated scores of RMSECV ∼1.56 ± 0.04 and r2 0.98 ± 0.01. Thus, the model accuracy ±10–30% is well within the standard safety margins.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat impact control in flash pasteurization by estimation of applied pasteurization units using near infrared spectroscopy\",\"authors\":\"Barış Gün Sürmeli, Imke Weishaupt, Knut Schwarzer, N. Moriz, J. Schneider\",\"doi\":\"10.1177/09670335211057233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pasteurization is a crucial processing method in the food industry to ensure the safety of consumables. A major part of contemporary pasteurization processes involves using flash pasteurizer systems, where liquids are pumped through a pipe system to heat them for a predefined time. Accurately monitoring the amount of heat treatment applied to a product is challenging. This monitoring helps ensure that the correct heat impact (expressed in pasteurization units) is applied, which is commonly calculated as a product of time and temperature, taking achievability of the inactivation of the microorganisms into account. The state-of-the-art method involves a calculation of the applied pasteurization units using a one-point temperature measurement and the holding time for this temperature. Concerns about accuracy lead to high safety margins, reducing the quality of the pasteurized product. In this study, the applied pasteurization level was estimated using regression models trained with NIR spectroscopy data collected while pasteurizing fruit juices of different types and brands. Several conventional regression models were trained in combination with different preprocessing methods, including a novel prediction outlier detection method. Generalized juice models trained with the concatenated data of all types of juices demonstrated cross-validated scores of RMSECV ∼2.78 ± 0.09 and r2 0.96 ± 0.01, while separate juice models displayed averaged cross-validated scores of RMSECV ∼1.56 ± 0.04 and r2 0.98 ± 0.01. Thus, the model accuracy ±10–30% is well within the standard safety margins.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09670335211057233\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335211057233","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Heat impact control in flash pasteurization by estimation of applied pasteurization units using near infrared spectroscopy
Pasteurization is a crucial processing method in the food industry to ensure the safety of consumables. A major part of contemporary pasteurization processes involves using flash pasteurizer systems, where liquids are pumped through a pipe system to heat them for a predefined time. Accurately monitoring the amount of heat treatment applied to a product is challenging. This monitoring helps ensure that the correct heat impact (expressed in pasteurization units) is applied, which is commonly calculated as a product of time and temperature, taking achievability of the inactivation of the microorganisms into account. The state-of-the-art method involves a calculation of the applied pasteurization units using a one-point temperature measurement and the holding time for this temperature. Concerns about accuracy lead to high safety margins, reducing the quality of the pasteurized product. In this study, the applied pasteurization level was estimated using regression models trained with NIR spectroscopy data collected while pasteurizing fruit juices of different types and brands. Several conventional regression models were trained in combination with different preprocessing methods, including a novel prediction outlier detection method. Generalized juice models trained with the concatenated data of all types of juices demonstrated cross-validated scores of RMSECV ∼2.78 ± 0.09 and r2 0.96 ± 0.01, while separate juice models displayed averaged cross-validated scores of RMSECV ∼1.56 ± 0.04 and r2 0.98 ± 0.01. Thus, the model accuracy ±10–30% is well within the standard safety margins.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.