人体股骨有限元建模中所选材料特性综述

P. Bazyar, Andreas Baumgart, H. Altenbach, A. Usbeck
{"title":"人体股骨有限元建模中所选材料特性综述","authors":"P. Bazyar, Andreas Baumgart, H. Altenbach, A. Usbeck","doi":"10.3390/biomechanics3010012","DOIUrl":null,"url":null,"abstract":"Specific finite detail modeling of the human body gives a capable primary enhancement to the prediction of damage risk through automobile impact. Currently, car crash protection countermeasure improvement is based on an aggregate of testing with installed anthropomorphic test devices (i.e., ATD or dummy) and a mixture of multibody (dummy) and finite element detail (vehicle) modeling. If an incredibly easy finite element detail version can be advanced to capture extra statistics beyond the abilities of the multi-body structures, it might allow advanced countermeasure improvement through a more targeted prediction of overall performance. Numerous research has been done on finite element analysis of broken femurs. However, there are two missing pieces of information: 1- choosing the right material properties, and 2- designing a precise model including the inner structure of the bone. In this research, most of the chosen material properties for femur bone will be discussed and evaluated.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Overview of Selected Material Properties in Finite Element Modeling of the Human Femur\",\"authors\":\"P. Bazyar, Andreas Baumgart, H. Altenbach, A. Usbeck\",\"doi\":\"10.3390/biomechanics3010012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Specific finite detail modeling of the human body gives a capable primary enhancement to the prediction of damage risk through automobile impact. Currently, car crash protection countermeasure improvement is based on an aggregate of testing with installed anthropomorphic test devices (i.e., ATD or dummy) and a mixture of multibody (dummy) and finite element detail (vehicle) modeling. If an incredibly easy finite element detail version can be advanced to capture extra statistics beyond the abilities of the multi-body structures, it might allow advanced countermeasure improvement through a more targeted prediction of overall performance. Numerous research has been done on finite element analysis of broken femurs. However, there are two missing pieces of information: 1- choosing the right material properties, and 2- designing a precise model including the inner structure of the bone. In this research, most of the chosen material properties for femur bone will be discussed and evaluated.\",\"PeriodicalId\":72381,\"journal\":{\"name\":\"Biomechanics (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biomechanics3010012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomechanics3010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人体的特定有限细节建模为预测汽车碰撞造成的损伤风险提供了有力的初步增强。目前,汽车碰撞防护对策的改进是基于已安装的拟人化测试设备(即ATD或假人)以及多体(假人)和有限元细节(车辆)建模的混合测试。如果一个非常简单的有限元细节版本能够被推进,以捕捉多体结构能力之外的额外统计数据,那么它可能会通过对整体性能进行更有针对性的预测来改进高级对抗措施。对股骨骨折的有限元分析进行了大量的研究。然而,有两条信息缺失:1-选择正确的材料特性,2-设计包括骨骼内部结构的精确模型。在本研究中,将讨论和评估股骨的大多数选定材料特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Overview of Selected Material Properties in Finite Element Modeling of the Human Femur
Specific finite detail modeling of the human body gives a capable primary enhancement to the prediction of damage risk through automobile impact. Currently, car crash protection countermeasure improvement is based on an aggregate of testing with installed anthropomorphic test devices (i.e., ATD or dummy) and a mixture of multibody (dummy) and finite element detail (vehicle) modeling. If an incredibly easy finite element detail version can be advanced to capture extra statistics beyond the abilities of the multi-body structures, it might allow advanced countermeasure improvement through a more targeted prediction of overall performance. Numerous research has been done on finite element analysis of broken femurs. However, there are two missing pieces of information: 1- choosing the right material properties, and 2- designing a precise model including the inner structure of the bone. In this research, most of the chosen material properties for femur bone will be discussed and evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信