{"title":"完全特殊全息流形上的全局摄动势函数","authors":"Teng Huang","doi":"10.4310/ajm.2021.v25.n3.a4","DOIUrl":null,"url":null,"abstract":"In this article, we introduce and study the notion of a complete special holonomy manifold $(X,\\omega)$ which is given by a global perturbation potential function, i.e., there are a function $f$ and a smooth differential $\\omega'$ on $X$ such that $\\omega=\\mathcal{L}_{\\nabla f}\\omega+\\omega'$. We establish some vanishing theorems on the $L^{2}$ harmonic forms under some conditions on the global perturbation potential function.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global perturbation potential function on complete special holonomy manifolds\",\"authors\":\"Teng Huang\",\"doi\":\"10.4310/ajm.2021.v25.n3.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce and study the notion of a complete special holonomy manifold $(X,\\\\omega)$ which is given by a global perturbation potential function, i.e., there are a function $f$ and a smooth differential $\\\\omega'$ on $X$ such that $\\\\omega=\\\\mathcal{L}_{\\\\nabla f}\\\\omega+\\\\omega'$. We establish some vanishing theorems on the $L^{2}$ harmonic forms under some conditions on the global perturbation potential function.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2021.v25.n3.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n3.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global perturbation potential function on complete special holonomy manifolds
In this article, we introduce and study the notion of a complete special holonomy manifold $(X,\omega)$ which is given by a global perturbation potential function, i.e., there are a function $f$ and a smooth differential $\omega'$ on $X$ such that $\omega=\mathcal{L}_{\nabla f}\omega+\omega'$. We establish some vanishing theorems on the $L^{2}$ harmonic forms under some conditions on the global perturbation potential function.