具有温度和微温度效应的全von Kármán光束的衰变

IF 2.6 4区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
M. Aouadi, Souad Guerine
{"title":"具有温度和微温度效应的全von Kármán光束的衰变","authors":"M. Aouadi, Souad Guerine","doi":"10.1051/mmnp/2023002","DOIUrl":null,"url":null,"abstract":"In this article we derive the equations that constitute the mathematical model of the full von\nK\\'{a}rm\\'{a}n beam with  temperature and microtemperatures effects. The nonlinear governing equations are derived by using Hamilton principle in the framework of Euler–Bernoulli beam theory.   Under quite general assumptions on nonlinear damping function acting on the transversal component and based on nonlinear semigroups and the theory\nof monotone operators, we establish existence and uniqueness of weak and strong solutions to the derived\nproblem.  Then using the  multiplier method, we show that solutions decay exponentially.\nFinally we consider the case  of zero thermal conductivity and we show that the dissipation given only by the microtemperatures is strong enough to produce  exponential stability.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Decay in full von Kármán beam with temperature and microtemperatures effects\",\"authors\":\"M. Aouadi, Souad Guerine\",\"doi\":\"10.1051/mmnp/2023002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we derive the equations that constitute the mathematical model of the full von\\nK\\\\'{a}rm\\\\'{a}n beam with  temperature and microtemperatures effects. The nonlinear governing equations are derived by using Hamilton principle in the framework of Euler–Bernoulli beam theory.   Under quite general assumptions on nonlinear damping function acting on the transversal component and based on nonlinear semigroups and the theory\\nof monotone operators, we establish existence and uniqueness of weak and strong solutions to the derived\\nproblem.  Then using the  multiplier method, we show that solutions decay exponentially.\\nFinally we consider the case  of zero thermal conductivity and we show that the dissipation given only by the microtemperatures is strong enough to produce  exponential stability.\",\"PeriodicalId\":18285,\"journal\":{\"name\":\"Mathematical Modelling of Natural Phenomena\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling of Natural Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/mmnp/2023002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2023002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

本文推导了具有温度和微温度效应的全vonK\'{a} m\'{a}n光束的数学模型。在欧拉-伯努利梁理论的框架下,利用Hamilton原理推导了非线性控制方程。在非线性阻尼函数作用于横向分量的相当一般的假设下,基于非线性半群和单调算子理论,我们建立了所导出问题的弱解和强解的存在唯一性。然后利用乘数法,我们证明了解呈指数衰减。最后,我们考虑了导热系数为零的情况,并证明了仅由微温度给出的耗散足以产生指数稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decay in full von Kármán beam with temperature and microtemperatures effects
In this article we derive the equations that constitute the mathematical model of the full von K\'{a}rm\'{a}n beam with  temperature and microtemperatures effects. The nonlinear governing equations are derived by using Hamilton principle in the framework of Euler–Bernoulli beam theory.   Under quite general assumptions on nonlinear damping function acting on the transversal component and based on nonlinear semigroups and the theory of monotone operators, we establish existence and uniqueness of weak and strong solutions to the derived problem.  Then using the  multiplier method, we show that solutions decay exponentially. Finally we consider the case  of zero thermal conductivity and we show that the dissipation given only by the microtemperatures is strong enough to produce  exponential stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Modelling of Natural Phenomena
Mathematical Modelling of Natural Phenomena MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
5.20
自引率
0.00%
发文量
46
审稿时长
6-12 weeks
期刊介绍: The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues. Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信