{"title":"中子遇到冰的多晶态","authors":"K. Komatsu","doi":"10.1080/0889311X.2022.2127148","DOIUrl":null,"url":null,"abstract":"The current epoch can be described as the ‘age of ice-rush’, as the rate of discovery of ice polymorphs, of which there are currently 20 known, has accelerated, particularly since the end of the last century. This is largely owing to advances in neutron diffraction under pressure. Neutrons can interact with light elements such as hydrogen as well as heavy elements, making neutron diffraction essential for full structural analyses of newly discovered ice polymorphs. It is especially useful for detecting crystallographic symmetry breaking due to hydrogen ordering. This review will go over the most recent technical advances in neutron-diffraction experiments and how they contribute to our understanding of ice polymorphs.","PeriodicalId":54385,"journal":{"name":"Crystallography Reviews","volume":"28 1","pages":"224 - 297"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutrons meet ice polymorphs\",\"authors\":\"K. Komatsu\",\"doi\":\"10.1080/0889311X.2022.2127148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current epoch can be described as the ‘age of ice-rush’, as the rate of discovery of ice polymorphs, of which there are currently 20 known, has accelerated, particularly since the end of the last century. This is largely owing to advances in neutron diffraction under pressure. Neutrons can interact with light elements such as hydrogen as well as heavy elements, making neutron diffraction essential for full structural analyses of newly discovered ice polymorphs. It is especially useful for detecting crystallographic symmetry breaking due to hydrogen ordering. This review will go over the most recent technical advances in neutron-diffraction experiments and how they contribute to our understanding of ice polymorphs.\",\"PeriodicalId\":54385,\"journal\":{\"name\":\"Crystallography Reviews\",\"volume\":\"28 1\",\"pages\":\"224 - 297\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystallography Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/0889311X.2022.2127148\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystallography Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/0889311X.2022.2127148","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
The current epoch can be described as the ‘age of ice-rush’, as the rate of discovery of ice polymorphs, of which there are currently 20 known, has accelerated, particularly since the end of the last century. This is largely owing to advances in neutron diffraction under pressure. Neutrons can interact with light elements such as hydrogen as well as heavy elements, making neutron diffraction essential for full structural analyses of newly discovered ice polymorphs. It is especially useful for detecting crystallographic symmetry breaking due to hydrogen ordering. This review will go over the most recent technical advances in neutron-diffraction experiments and how they contribute to our understanding of ice polymorphs.
期刊介绍:
Crystallography Reviews publishes English language reviews on topics in crystallography and crystal growth, covering all theoretical and applied aspects of biological, chemical, industrial, mineralogical and physical crystallography. The intended readership is the crystallographic community at large, as well as scientists working in related fields of interest. It is hoped that the articles will be accessible to all these, and not just specialists in each topic. Full reviews are typically 20 to 80 journal pages long with hundreds of references and the journal also welcomes shorter topical, book, historical, evaluation, biographical, data and key issues reviews.