用有限元分析法研究沥青路面开裂性能

IF 1 Q4 ENGINEERING, CIVIL
M. Tajdini, A. Taherkhani
{"title":"用有限元分析法研究沥青路面开裂性能","authors":"M. Tajdini, A. Taherkhani","doi":"10.22059/CEIJ.2020.267723.1521","DOIUrl":null,"url":null,"abstract":"Occurrence of top down and bottom up fatigue cracking in asphaltic pavements is common. Conventional pavement analysis methods ignore the existence of cracks in asphaltic layers. However, it seems that the responses of cracked pavement would not be the same as a pavement without crack. This paper describes effects of crack type, position and length, and vehicles tire inflation pressure and axle load on the performance of cracked asphalt pavement. Tensile strain at the bottom of asphaltic layer, the vertical strain on subgrade, maximum deflection on the surface, rut depth and the stress intensity factors of cracked pavement, with top down and bottom up crack have been computed using 3D Finite Elements method in ABAQUS. Moving load of standard single axle with different loads and tire pressures have been used in the analysis. Standard 8.2 ton single axle load at different tire pressures of 552(80), 690(100), 828(120) and 1035(150) kPa(psi) and single axle at different loads of 5, 8.2 and 15 ton, all at the same tire pressure of 690 kPa, have been used. Results show that the pavement responses increase with increasing tire pressure and axle load with higher values and rate of increase with increasing tire pressure and axle load for the cracked pavement compared with the pavement without crack. For the pavement structure investigated in this study, it was found that, in general, top down crack results in higher responses than bottom up crack.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":"53 1","pages":"33-51"},"PeriodicalIF":1.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigating the Performance of Cracked Asphalt Pavement Using Finite Elements Analysis\",\"authors\":\"M. Tajdini, A. Taherkhani\",\"doi\":\"10.22059/CEIJ.2020.267723.1521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Occurrence of top down and bottom up fatigue cracking in asphaltic pavements is common. Conventional pavement analysis methods ignore the existence of cracks in asphaltic layers. However, it seems that the responses of cracked pavement would not be the same as a pavement without crack. This paper describes effects of crack type, position and length, and vehicles tire inflation pressure and axle load on the performance of cracked asphalt pavement. Tensile strain at the bottom of asphaltic layer, the vertical strain on subgrade, maximum deflection on the surface, rut depth and the stress intensity factors of cracked pavement, with top down and bottom up crack have been computed using 3D Finite Elements method in ABAQUS. Moving load of standard single axle with different loads and tire pressures have been used in the analysis. Standard 8.2 ton single axle load at different tire pressures of 552(80), 690(100), 828(120) and 1035(150) kPa(psi) and single axle at different loads of 5, 8.2 and 15 ton, all at the same tire pressure of 690 kPa, have been used. Results show that the pavement responses increase with increasing tire pressure and axle load with higher values and rate of increase with increasing tire pressure and axle load for the cracked pavement compared with the pavement without crack. For the pavement structure investigated in this study, it was found that, in general, top down crack results in higher responses than bottom up crack.\",\"PeriodicalId\":43959,\"journal\":{\"name\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"volume\":\"53 1\",\"pages\":\"33-51\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/CEIJ.2020.267723.1521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/CEIJ.2020.267723.1521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

摘要

沥青路面由上而下和由下而上的疲劳开裂是常见的现象。传统的路面分析方法忽略了沥青层中裂缝的存在。然而,裂缝路面的响应似乎与没有裂缝的路面不同。研究了裂缝类型、位置和长度以及车辆轮胎充气压力和轴载对裂缝沥青路面性能的影响。在ABAQUS软件中,采用三维有限元法计算了沥青层底部拉应变、路基竖向应变、路面最大挠度、车辙深度以及裂缝路面的应力强度因子。采用标准单轴在不同载荷和胎压下的运动载荷进行分析。在552(80)、690(100)、828(120)和1035(150)kPa(psi)不同胎压下的标准8.2吨单轴载荷,以及在相同胎压690 kPa下的5、8.2和15吨不同单轴载荷。结果表明:路面响应随胎压和轴重的增大而增大,有裂缝路面响应随胎压和轴重的增大值和增大率均高于无裂缝路面;对于本研究的路面结构,研究发现,总体而言,自上而下的裂缝比自下而上的裂缝产生更高的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the Performance of Cracked Asphalt Pavement Using Finite Elements Analysis
Occurrence of top down and bottom up fatigue cracking in asphaltic pavements is common. Conventional pavement analysis methods ignore the existence of cracks in asphaltic layers. However, it seems that the responses of cracked pavement would not be the same as a pavement without crack. This paper describes effects of crack type, position and length, and vehicles tire inflation pressure and axle load on the performance of cracked asphalt pavement. Tensile strain at the bottom of asphaltic layer, the vertical strain on subgrade, maximum deflection on the surface, rut depth and the stress intensity factors of cracked pavement, with top down and bottom up crack have been computed using 3D Finite Elements method in ABAQUS. Moving load of standard single axle with different loads and tire pressures have been used in the analysis. Standard 8.2 ton single axle load at different tire pressures of 552(80), 690(100), 828(120) and 1035(150) kPa(psi) and single axle at different loads of 5, 8.2 and 15 ton, all at the same tire pressure of 690 kPa, have been used. Results show that the pavement responses increase with increasing tire pressure and axle load with higher values and rate of increase with increasing tire pressure and axle load for the cracked pavement compared with the pavement without crack. For the pavement structure investigated in this study, it was found that, in general, top down crack results in higher responses than bottom up crack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
60.00%
发文量
0
审稿时长
47 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信