{"title":"(1+1)维拟线性波动方程组行波的全局稳定性","authors":"Louis Dongbing Cha, Arick Shao","doi":"10.1142/S0219891622500163","DOIUrl":null,"url":null,"abstract":"A key feature of [Formula: see text]-dimensional nonlinear wave equations is that they admit left or right traveling waves, under appropriate algebraic conditions on the nonlinearities. In this paper, we prove global stability of such traveling wave solutions for [Formula: see text]-dimensional systems of nonlinear wave equations, given a certain asymptotic null condition and sufficient decay for the traveling wave. We first consider semilinear systems as a simpler model problem; we then proceed to treat more general quasilinear systems.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global stability of traveling waves for (1 + 1)-dimensional systems of quasilinear wave equations\",\"authors\":\"Louis Dongbing Cha, Arick Shao\",\"doi\":\"10.1142/S0219891622500163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key feature of [Formula: see text]-dimensional nonlinear wave equations is that they admit left or right traveling waves, under appropriate algebraic conditions on the nonlinearities. In this paper, we prove global stability of such traveling wave solutions for [Formula: see text]-dimensional systems of nonlinear wave equations, given a certain asymptotic null condition and sufficient decay for the traveling wave. We first consider semilinear systems as a simpler model problem; we then proceed to treat more general quasilinear systems.\",\"PeriodicalId\":50182,\"journal\":{\"name\":\"Journal of Hyperbolic Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hyperbolic Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219891622500163\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219891622500163","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global stability of traveling waves for (1 + 1)-dimensional systems of quasilinear wave equations
A key feature of [Formula: see text]-dimensional nonlinear wave equations is that they admit left or right traveling waves, under appropriate algebraic conditions on the nonlinearities. In this paper, we prove global stability of such traveling wave solutions for [Formula: see text]-dimensional systems of nonlinear wave equations, given a certain asymptotic null condition and sufficient decay for the traveling wave. We first consider semilinear systems as a simpler model problem; we then proceed to treat more general quasilinear systems.
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.