(1+1)维拟线性波动方程组行波的全局稳定性

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Louis Dongbing Cha, Arick Shao
{"title":"(1+1)维拟线性波动方程组行波的全局稳定性","authors":"Louis Dongbing Cha, Arick Shao","doi":"10.1142/S0219891622500163","DOIUrl":null,"url":null,"abstract":"A key feature of [Formula: see text]-dimensional nonlinear wave equations is that they admit left or right traveling waves, under appropriate algebraic conditions on the nonlinearities. In this paper, we prove global stability of such traveling wave solutions for [Formula: see text]-dimensional systems of nonlinear wave equations, given a certain asymptotic null condition and sufficient decay for the traveling wave. We first consider semilinear systems as a simpler model problem; we then proceed to treat more general quasilinear systems.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global stability of traveling waves for (1 + 1)-dimensional systems of quasilinear wave equations\",\"authors\":\"Louis Dongbing Cha, Arick Shao\",\"doi\":\"10.1142/S0219891622500163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key feature of [Formula: see text]-dimensional nonlinear wave equations is that they admit left or right traveling waves, under appropriate algebraic conditions on the nonlinearities. In this paper, we prove global stability of such traveling wave solutions for [Formula: see text]-dimensional systems of nonlinear wave equations, given a certain asymptotic null condition and sufficient decay for the traveling wave. We first consider semilinear systems as a simpler model problem; we then proceed to treat more general quasilinear systems.\",\"PeriodicalId\":50182,\"journal\":{\"name\":\"Journal of Hyperbolic Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hyperbolic Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219891622500163\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219891622500163","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

一维非线性波动方程的一个关键特征是,在适当的非线性代数条件下,它们允许左行波或右行波。本文在给定一定的渐近零条件和行波的充分衰减条件下,证明了[公式:见文]一维非线性波动方程系统的行波解的全局稳定性。我们首先把半线性系统看作一个简单的模型问题;然后我们继续处理更一般的拟线性系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global stability of traveling waves for (1 + 1)-dimensional systems of quasilinear wave equations
A key feature of [Formula: see text]-dimensional nonlinear wave equations is that they admit left or right traveling waves, under appropriate algebraic conditions on the nonlinearities. In this paper, we prove global stability of such traveling wave solutions for [Formula: see text]-dimensional systems of nonlinear wave equations, given a certain asymptotic null condition and sufficient decay for the traveling wave. We first consider semilinear systems as a simpler model problem; we then proceed to treat more general quasilinear systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hyperbolic Differential Equations
Journal of Hyperbolic Differential Equations 数学-物理:数学物理
CiteScore
1.10
自引率
0.00%
发文量
15
审稿时长
24 months
期刊介绍: This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in: Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions. Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc. Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations. Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc. General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations. Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信