个体观测与频率的回归建模与预测

Q3 Mathematics
S. Lipovetsky
{"title":"个体观测与频率的回归建模与预测","authors":"S. Lipovetsky","doi":"10.22237/jmasm/1556669100","DOIUrl":null,"url":null,"abstract":"A regression model built by a dataset could sometimes demonstrate a low quality of fit and poor predictions of individual observations. However, using the frequencies of possible combinations of the predictors and the outcome, the same models with the same parameters may yield a high quality of fit and precise predictions for the frequencies of the outcome occurrence. Linear and logistical regressions are used to make an explicit exposition of the results of regression modeling and prediction.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":"18 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regression Modeling and Prediction by Individual Observations versus Frequency\",\"authors\":\"S. Lipovetsky\",\"doi\":\"10.22237/jmasm/1556669100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A regression model built by a dataset could sometimes demonstrate a low quality of fit and poor predictions of individual observations. However, using the frequencies of possible combinations of the predictors and the outcome, the same models with the same parameters may yield a high quality of fit and precise predictions for the frequencies of the outcome occurrence. Linear and logistical regressions are used to make an explicit exposition of the results of regression modeling and prediction.\",\"PeriodicalId\":47201,\"journal\":{\"name\":\"Journal of Modern Applied Statistical Methods\",\"volume\":\"18 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Applied Statistical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/jmasm/1556669100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/jmasm/1556669100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

由数据集建立的回归模型有时可能表现出较低的拟合质量和对个别观察结果的较差预测。然而,使用预测因子和结果可能组合的频率,具有相同参数的相同模型可能产生高质量的拟合和对结果发生频率的精确预测。线性和逻辑回归被用来对回归建模和预测的结果进行明确的阐述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regression Modeling and Prediction by Individual Observations versus Frequency
A regression model built by a dataset could sometimes demonstrate a low quality of fit and poor predictions of individual observations. However, using the frequencies of possible combinations of the predictors and the outcome, the same models with the same parameters may yield a high quality of fit and precise predictions for the frequencies of the outcome occurrence. Linear and logistical regressions are used to make an explicit exposition of the results of regression modeling and prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
5
期刊介绍: The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信