生物数据文本和数据挖掘的研究进展:模型、方法和应用

Q3 Computer Science
I. Izonin, S. Babichev
{"title":"生物数据文本和数据挖掘的研究进展:模型、方法和应用","authors":"I. Izonin, S. Babichev","doi":"10.2174/1875036202114010036","DOIUrl":null,"url":null,"abstract":"The development of biological systems over billions of years has made them very difficult to understand. Biologists and clinical scientists try to understand various biological processes using different tools. However, vast amounts of data for analysis, complex multi-parameter interconnections between the data of a particular set, and hidden relationships between them significantly affect its processing and analysis. The latest advances in Artificial Intelligence (AI), mainly text mining, data mining, artificial neural networks, fuzzy logic, machine learning, and others, can significantly improve the processing of such data. In particular, it creates potential opportunities for doing high-impact investigations that can solve real-world tasks in the system biology branch. The peculiarities of biological data are that it has different types, formats, structures, and huge volumes, which significantly complicates its processing and analysis. Such processing should include models, methods, and tools for efficient storage and retrieval of various types of data; an effective conversion and consolidation of the data of multiple formats; fast optimization and transfer; reliable intellectual analysis to obtain valuable information; as well as informative data visualizations for future visual analysis or better human perception. All this necessitates combining existing and developing new, faster, and precision AI technics for future information discovery and knowledge engineering from such data.","PeriodicalId":38956,"journal":{"name":"Open Bioinformatics Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Text and Data Mining of Biological Data: Models, Methods and Applications\",\"authors\":\"I. Izonin, S. Babichev\",\"doi\":\"10.2174/1875036202114010036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of biological systems over billions of years has made them very difficult to understand. Biologists and clinical scientists try to understand various biological processes using different tools. However, vast amounts of data for analysis, complex multi-parameter interconnections between the data of a particular set, and hidden relationships between them significantly affect its processing and analysis. The latest advances in Artificial Intelligence (AI), mainly text mining, data mining, artificial neural networks, fuzzy logic, machine learning, and others, can significantly improve the processing of such data. In particular, it creates potential opportunities for doing high-impact investigations that can solve real-world tasks in the system biology branch. The peculiarities of biological data are that it has different types, formats, structures, and huge volumes, which significantly complicates its processing and analysis. Such processing should include models, methods, and tools for efficient storage and retrieval of various types of data; an effective conversion and consolidation of the data of multiple formats; fast optimization and transfer; reliable intellectual analysis to obtain valuable information; as well as informative data visualizations for future visual analysis or better human perception. All this necessitates combining existing and developing new, faster, and precision AI technics for future information discovery and knowledge engineering from such data.\",\"PeriodicalId\":38956,\"journal\":{\"name\":\"Open Bioinformatics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Bioinformatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1875036202114010036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Bioinformatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875036202114010036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

数十亿年来生物系统的发展使人们很难理解它们。生物学家和临床科学家试图使用不同的工具来理解各种生物过程。然而,用于分析的大量数据、特定集合的数据之间复杂的多参数互连以及它们之间隐藏的关系会显著影响其处理和分析。人工智能(AI)的最新进展,主要是文本挖掘、数据挖掘、人工神经网络、模糊逻辑、机器学习等,可以显著改善对此类数据的处理。特别是,它为进行高影响调查创造了潜在的机会,可以解决系统生物学分支中的现实世界任务。生物数据的特点是它有不同的类型、格式、结构和庞大的体积,这使其处理和分析变得非常复杂。此类处理应包括用于有效存储和检索各种类型数据的模型、方法和工具;有效转换和合并多种格式的数据;快速优化和转移;可靠的智力分析,以获得有价值的信息;以及用于未来视觉分析或更好的人类感知的信息性数据可视化。所有这些都需要将现有和正在开发的新的、更快的、精确的人工智能技术结合起来,以便从这些数据中进行未来的信息发现和知识工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in Text and Data Mining of Biological Data: Models, Methods and Applications
The development of biological systems over billions of years has made them very difficult to understand. Biologists and clinical scientists try to understand various biological processes using different tools. However, vast amounts of data for analysis, complex multi-parameter interconnections between the data of a particular set, and hidden relationships between them significantly affect its processing and analysis. The latest advances in Artificial Intelligence (AI), mainly text mining, data mining, artificial neural networks, fuzzy logic, machine learning, and others, can significantly improve the processing of such data. In particular, it creates potential opportunities for doing high-impact investigations that can solve real-world tasks in the system biology branch. The peculiarities of biological data are that it has different types, formats, structures, and huge volumes, which significantly complicates its processing and analysis. Such processing should include models, methods, and tools for efficient storage and retrieval of various types of data; an effective conversion and consolidation of the data of multiple formats; fast optimization and transfer; reliable intellectual analysis to obtain valuable information; as well as informative data visualizations for future visual analysis or better human perception. All this necessitates combining existing and developing new, faster, and precision AI technics for future information discovery and knowledge engineering from such data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Bioinformatics Journal
Open Bioinformatics Journal Computer Science-Computer Science (miscellaneous)
CiteScore
2.40
自引率
0.00%
发文量
4
期刊介绍: The Open Bioinformatics Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters, clinical trial studies and guest edited single topic issues in all areas of bioinformatics and computational biology. The coverage includes biomedicine, focusing on large data acquisition, analysis and curation, computational and statistical methods for the modeling and analysis of biological data, and descriptions of new algorithms and databases. The Open Bioinformatics Journal, a peer reviewed journal, is an important and reliable source of current information on the developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信