{"title":"生物数据文本和数据挖掘的研究进展:模型、方法和应用","authors":"I. Izonin, S. Babichev","doi":"10.2174/1875036202114010036","DOIUrl":null,"url":null,"abstract":"The development of biological systems over billions of years has made them very difficult to understand. Biologists and clinical scientists try to understand various biological processes using different tools. However, vast amounts of data for analysis, complex multi-parameter interconnections between the data of a particular set, and hidden relationships between them significantly affect its processing and analysis. The latest advances in Artificial Intelligence (AI), mainly text mining, data mining, artificial neural networks, fuzzy logic, machine learning, and others, can significantly improve the processing of such data. In particular, it creates potential opportunities for doing high-impact investigations that can solve real-world tasks in the system biology branch. The peculiarities of biological data are that it has different types, formats, structures, and huge volumes, which significantly complicates its processing and analysis. Such processing should include models, methods, and tools for efficient storage and retrieval of various types of data; an effective conversion and consolidation of the data of multiple formats; fast optimization and transfer; reliable intellectual analysis to obtain valuable information; as well as informative data visualizations for future visual analysis or better human perception. All this necessitates combining existing and developing new, faster, and precision AI technics for future information discovery and knowledge engineering from such data.","PeriodicalId":38956,"journal":{"name":"Open Bioinformatics Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Text and Data Mining of Biological Data: Models, Methods and Applications\",\"authors\":\"I. Izonin, S. Babichev\",\"doi\":\"10.2174/1875036202114010036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of biological systems over billions of years has made them very difficult to understand. Biologists and clinical scientists try to understand various biological processes using different tools. However, vast amounts of data for analysis, complex multi-parameter interconnections between the data of a particular set, and hidden relationships between them significantly affect its processing and analysis. The latest advances in Artificial Intelligence (AI), mainly text mining, data mining, artificial neural networks, fuzzy logic, machine learning, and others, can significantly improve the processing of such data. In particular, it creates potential opportunities for doing high-impact investigations that can solve real-world tasks in the system biology branch. The peculiarities of biological data are that it has different types, formats, structures, and huge volumes, which significantly complicates its processing and analysis. Such processing should include models, methods, and tools for efficient storage and retrieval of various types of data; an effective conversion and consolidation of the data of multiple formats; fast optimization and transfer; reliable intellectual analysis to obtain valuable information; as well as informative data visualizations for future visual analysis or better human perception. All this necessitates combining existing and developing new, faster, and precision AI technics for future information discovery and knowledge engineering from such data.\",\"PeriodicalId\":38956,\"journal\":{\"name\":\"Open Bioinformatics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Bioinformatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1875036202114010036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Bioinformatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875036202114010036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Advances in Text and Data Mining of Biological Data: Models, Methods and Applications
The development of biological systems over billions of years has made them very difficult to understand. Biologists and clinical scientists try to understand various biological processes using different tools. However, vast amounts of data for analysis, complex multi-parameter interconnections between the data of a particular set, and hidden relationships between them significantly affect its processing and analysis. The latest advances in Artificial Intelligence (AI), mainly text mining, data mining, artificial neural networks, fuzzy logic, machine learning, and others, can significantly improve the processing of such data. In particular, it creates potential opportunities for doing high-impact investigations that can solve real-world tasks in the system biology branch. The peculiarities of biological data are that it has different types, formats, structures, and huge volumes, which significantly complicates its processing and analysis. Such processing should include models, methods, and tools for efficient storage and retrieval of various types of data; an effective conversion and consolidation of the data of multiple formats; fast optimization and transfer; reliable intellectual analysis to obtain valuable information; as well as informative data visualizations for future visual analysis or better human perception. All this necessitates combining existing and developing new, faster, and precision AI technics for future information discovery and knowledge engineering from such data.
期刊介绍:
The Open Bioinformatics Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters, clinical trial studies and guest edited single topic issues in all areas of bioinformatics and computational biology. The coverage includes biomedicine, focusing on large data acquisition, analysis and curation, computational and statistical methods for the modeling and analysis of biological data, and descriptions of new algorithms and databases. The Open Bioinformatics Journal, a peer reviewed journal, is an important and reliable source of current information on the developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.